Forward Jets and Multi-Jets at HERA

Günter Grindhammer Max-Planck-Institute for Physics, Munich

Low-x Workshop, Lisbon, June 28 - July 1, 2006

- introduction
- forward jets and more from HI
- three jets from HI
- three and four jets from ZEUS

Parton Evolution & Kinematic Plane

- at the LHC: for moderate/large Q2 and x take pdfs from HERA & evolve them with DGLAP
- at the LHC: for which x and Q2 is the coll. approx. no longer sufficiently precise?
- what are the numerical values for the onset of low-x effects on the x and Q2 scale?
- what low-x effects are observed at HERA?
- at the LHC: what are the implications?

Forward Jets in DIS

- in DGLAP the strong ordering in virtuality gives softest pt gluon closest to proton
- suppress DGLAP: $p^2_{t,jet} \sim Q^2$
- in BFKL the gluon pt close to the proton can be hard; strong ordering occurs in x
- enhance BFKL: x_{jet} >> x_{Bj}

Event & Forward Jet Selection

- event phase space
 - $5 < Q^2 < 85 \text{ GeV}^2$
 - 0.1 < y < 0.7
 - 0.0001 < x_{Bj} < 0.004
- fwd jet (incl. k_⊥ in Breit frame) & cuts in HERA frame
 - 7° (2.79) < θ_{jet} (η_{jet}) < 20° (1.74)</p>
 - pt,jet > 3.5 GeV
 - $x_{jet} = E_{jet}/E_p > 0.035$
 - if N_{jet}>1, take most forward jet

H1 Collab., Eur. Phys. J. C 46 (2006) 27 [arXiv:hep-ex/0508055]

- dσ/dx_{Bj} with 0.5 < r = p²t,jet/Q² < 5 to suppress evIn. in Q²

- $d^3\sigma/dx_{Bj}dQ^2dp^2_{t,jet}$

NLO Dijet & NLO Trijet Calc. in DIS

hadronization corrections are applied to these calculations

QCD models in DIS

Forward Jets: do/dx_{Bj}

- NLO significantly below data for low x_{Bj}, LO << NLO, fwd-jets in LO suppressed by kinematics
- CASCADE (CCFM) doesn't describe shape of data, low at lowest x_{Bj}
- RAPGAP direct fails like NLO, direct+resolved and CDM give good description of data except at lowest x_{Bj}

Forward Jets: d³ $\sigma/dx_{Bj}dQ^2dp^2_{t,jet}$

Data, LO and NLO

- cross section as funct. of x_{Bj} in bins of p²t-Q² (no cut on p²t/Q²)
- range and average $r=p^2_{+}/Q^2$ shown for each bin

NLO

- in general below data
- better at high x_{Bj} , Q^2 and p^2_{t}

Forward Jets: d³ $\sigma/dx_{Bj}dQ^2dp^2_{t,jet}$

Data and CASCADE

- cross section as funct. of x_{Bj} in bins of p²t-Q² (no cut on p²t/Q²)
- range and average $r=p^2_{\dagger}/Q^2$ shown for each bin
- the CCFM model under and overshoots the data
- does CASCADE need resolved contributions and/ or splitting into quark-pairs ?

Forward Jets: d³ $\sigma/dx_{Bj}dQ^2dp^2_{t,jet}$

Data RAPGAP direct & resolved CDM

- check 2 kinematic regions
 - p²_t ~ Q² (r~1), ordered emissions suppressed
 - best described by DIR
 +RES (CDM not too bad)
 - p²_t >> Q² (r>>1), expect resolved contributions
 - best described by DIR
 +RES (CDM not too bad)

Forward Jet & Dijet Selection

- event phase space as before
- fwd jet (incl. kt in Breit frame) & cuts in HERA
 frame
 - O 7° (2.79) < θ_{jet} (η_{jet}) < 20° (1.74)
 - 0 pr. jet > 3.5 GeV
 - O $x_{jet} = E_{jet}/E_{p} > 0.035$
 - O if N_{jet} > 1, take most forward jet
 - fwd-jet & dijet (incl. k_t in Breit frame) & cuts in HERA frame
 - Pt,jet > 6 GeV for all 3 jets (take as dijets the jets with highest pt)
 - η_e < η_{jet1} < η_{jet2} < η_{fwdjet}
 - other cuts on fwd-jet as before
 - no cut on p²t,jet/Q²

same p_{t,jet} cut for all 3 jets disfavors evln. with strong p_t ordering as in DGLAP

- $d^3\sigma/d\Delta\eta_1 d\Delta\eta_2$ $\Delta\eta_1 = \eta_{jet2} - \eta_{jet1}$ $\Delta\eta_2 = \eta_{fwdjet} - \eta_{jet2}$

- Before p²_{t,jet}/Q² was used to study different regions of parton dynamics; here instead jet momenta & rapidity separations are used to study different regions of parton dymanics.
- $\Delta \eta_1$ small
 - and if $jet1/2 = q_{1/2}$ then x_g small
 - Δη₂ large → room for evln. in x between dijet system and fwd-jet
 - $\Delta \eta_2 \text{ small} \rightarrow \text{all 3 jets may be more}$ forward and jet1/2 may be gluon jets (not present in $O(\alpha_s^3)$ calc. \rightarrow data above NLO
- $\Delta\eta_1$ large, evln. in x may occur between jets of dijet system

- NLOJET++ (NLO O(α^{3}_{s}) trijet production, includes ln1/x in O(α_{s})
 - overall reasonable description of data within large uncertainties, except for $\Delta \eta_1 < 1$ and for decreasing $\Delta \eta_2$, i.e. when all 3 jets go forward (q+g+g is LO in $O(\alpha^3_s)$ calc. and g+g+g is higher order)
 - describes data well for $\Delta \eta_2$ large, i.e. for dijets at central rapidities

- CASCADE (CCFM)
 - does not describe data, "best" for $\Delta \eta_1 < 1$ and large $\Delta \eta_2$

- CDM: surprisingly good description of data everywhere
- RAPGAP (direct + resolved): fails to describe data

the breaking of k_t ordering seems best modeled by CDM and not by direct and resolved contributions a la DGLAP as in RAPGAP fwd-jet+dijet sample can distinguish between RG-DIR+RES and CDM

Event & Trijet Selection

H1 Prel., DIS 2006

- event phase space
 - $5 < Q^2 < 80 \text{ GeV}^2$
 - 0.1 < y < 0.7
 - 0.0001 < x_{Bj} < 0.01
- jets (incl. k_t in γ*p frame)
 - \blacksquare E^{*}_{t,jet} > 4 GeV (all 3 jets)
 - E*_{t,jet1} + E*_{t,jet2} > 9 GeV
 - $-1 < \eta_{jet} < 2.5$ in HERA frame
 - \geq 1 central jet with -1 < η_{jet} < 1.3

x_{jet} > 0.035

■ N_{jet} ≥ 3

Inclusive Trijets: $d\sigma/dN_{jet}$

- NLOJET++
 - NLO O(α³_s) misses ≈ 50% of events with N_{jet} ≥ 4
- CDM
 - provides excellent description
- RAPGAP (direct + resolved)
 - undershoots data for all N_{jet}

Inclusive Trijets: $d\sigma/dx_{Bj}$

NLOJET++

• observe significant improvement from LO to NLO O(α^3_s), particularly at low x_{Bj} and large η_{jet}

Inclusive Trijets: $d\sigma/dx_{Bj}$

- CDM provides a good description of both distributions
 - CDM normalized to data by factor 1.08
- RAPGAP (direct+resolved) fails to describe the data
 - RAPGAP normalized to data by factor 1.7

2 fwd-jets, mainly gluon jets 🖝 at lowest x_{Bj} un-ordered gluon emissions play an important role !

Three and Four-Jets in yp

MPI ... multi-parton interactions

- Motivation:
 - expect multi-jets and underlying event/ MPIs to be significant at LHC
 - test LO ME + matched parton shower QCD models in generating multi-jets
 - look for sensitivity to MPIs and test MPI models
 - is the physics of MPI's between the photon remnant and the proton the same as between proton and antiproton?
 - test fixed higher order pQCD calcs. in γp when available, currently only LO for 3-jets (O(α2s) at hand.

Three and Four-Jets in yp

ZEUS prel., DIS 2006

- event and jet phase space (incl. k_{\perp} , massless)
 - Q² < 1.0 GeV²,
 0.2 < y < 0.85
 - E_{T,jet1,2} > 7 GeV,
 E_{T,jet3,4} > 5 GeV
 - |η_{jet}| < 2.4,
 cos θ_{3'} < 0.95,X_{3'} < 0.95
- observables
 - $x_{\gamma}^{obs} = \sum_{i,i}^{njet} E_{T,i} e^{(-\eta i)} / (2\gamma E_e)$
 - $M_{nj}^2 = (\sum_{i=1}^{njet} p_i)^2$
 - $E_{T,i}$, $cos\theta_{3'}$, $cos\psi_{3'}$, y
- study two regions in mass:
 M_{nj} ≥ 25 GeV & M_{nj} ≥ 50 GeV

Monte Carlo Models - PYTHIA 6.2 & HERWIG 6.5 with/without MPIs

- PYTHIA MPIs tuned to collider data (JETWEB)
- HERWIG MPIs tuned to ZEUS multi-jets
 - -MCs without MPIs normalized to data for

 M_{nj} > 70 GeV

 \rightarrow Effect of MPIs larger for 4-jets and small M_{nj}

Four-Jets in $\gamma p: d\sigma/dx_{\gamma}^{obs}$

- MCs without MPIs describe x_{γ}^{obs} even for high M_{4j} only for large x_{γ}^{obs}
- PYTHIA & HERWIG without MPIs are roughly in agreement
- HERWIG with MPIs (JIMMY 4.0) provides a good description of data
- PYTHIA with MPIs fails completely

Three-Jets in $\gamma p: d\sigma/dy$

- HERWIG with MPIs fails to describe data (for low M_{3j})
- PYTHIA with MPIs fails completely
- Both MCs without MPIs describe shape of $d\sigma/dy$

Three-Jets in yp & LO pQCD

- for 3-jets in γp only LO (O(α²s)) calc.
 available (e.g. Klasen et al.)
- $\mu_r = \mu_f = E_{T,jet1}$
- evaluate scale uncertainties using 2^{±1} E_{T,je^{±1}} for scales
- proton & photon pdfs: CTEQ4L & GRV-G LO
- LO results corrected for hadronization and MPI corrections
- LO describes high M_{3j}, but fails for M_{3j} < 50 GeV
- NLO 3-jet calc. needed to learn more about MPIs

Summary/Conclusion

- CDM provides best description of all data, appears to have the necessary non-ordering in $k_{\rm t}.$
- NLO
 - fails for low(est) x_{Bj} , Q^2 and $p^2_{t,jet}$
 - improves a lot w.r.t. to LO, when compared to inclusive trijets; $O(\alpha^3 s)$ contains ln1/x term in LO.
 - fails when fwd-jet and dijet go forward, i.e. when two or even three jets are gluon jets
- DGLAP (DIR+RES)
 - describes many data reasonably
 - fails specific fwd-jet and dijet topologies; the k_t-breaking via resolved appears not sufficient.
- CCFM surprisingly fails

Summary/Conclusion

- MPI in 3 and 4-jets in γp
 - PYTHIA & HERWIG without MIPs agree, but fail to describe data for low x_{γ}
 - HERWIG with MPIs describes data, except shape of $d\sigma/dy$
 - PYTHIA with MPIs fails completely
 - LO calc. fails for low M_{nj} reed NLO 3-jet ($O(\alpha^3_s)$) calc. for γp

We have one more year of data taking at HERA. Which low-x measurements should still be done?