Jet Production at HERA and Measurement of αs

Paul Prídeaux

The University of Liverpool

1) Background - HERA 2) A bit of physics 3) Analyses a) Inclusive jets b) Multijets c) Forward jets 4) Summary

HERA

* Proton-electron collider ($\sqrt{s} = 320 \text{GeV}$) situated in

Hamburg, Germany

- * 220 bunches, 96ns crossings
- * Equivalent to a 50TeV fixed target beam
- * 6.4 km círcumference

* Vírtual boson interacts with constituent particle of proton

* Momentum transfer, $Q^2 = -q^2$ - virtuality of exchanged boson.

* Björken
$$x = Q^2 / 2p.q$$

 Fractional momentum of struck parton.

* Inelasticity, y = p.q / p.k
- Relative energy of electron transferred to proton.

Jet Production

- * 'Struck' parton quickly hadronises
- * Forms tight spray of hadrons a jet
- * Further jets may occur due to QCD radiation (gluons).
- * Jets studies can reveal much about the internal structure of the proton.
- * Requíre precíse jet measurements.

* HERA experiments have excellent jet resolution.

Jet Production

* Neutral Current DIS jet cross-section :

- * (1) Parton Dístríbutíon Function (PDF). Determined experimentally, evolution predicted by QCD.
- * (2) Hard scattering cross-section. Calculable from QCD.
- * (3) Effect of Hadronisation.

$\alpha_{\rm S}$ Extractions

"While the true is Godlike, it does not appear directly. We must divine its reality from its manifestations." - Goethe

* The strong coupling, the only free parameter of QCD, can not be measured directly.

* Data from processes thought to depend on α_s must be compared against theory predictions and the strong coupling extracted.

QCD uncertainties

* Renormalisation scale (μ_r) - scale at which strong coupling evaluated

* Factorisation scale (μf) - scale at which parton densities evaluated

* Cross-section only not dependent on μ_r for all order perturbation.

* Uncertainty can be as large as 50%, even at NLO.

NLO calculations

- * Older programs e.g. DISENT, DISASTER still used.
- * NLOJET++ is now most popular.
- * Interfaced to various PDFs eg. CTEQ, MR.ST
- * Parton level cross-sections need to rely on LO MC for hadronisation corrections
- * No Z exchange excludes highest Q² regions from QCD analysis where theory uncertainty ought to be lowest.
- * Theory errors dominate factor four larger than experimental errors for HERA average $\alpha_s(Mz)$

ONTE-CARLO

Le Casino

* Only Leading Order Monte Carlos available for DIS
- Matrix element + parton showers (e.g. Rapgap, Lepto)
- Colour dipole model (e.g Ariadne) parton level hadron level
* Hadronisation model

- Lund string
fragmentation
- Herwig Cluster

* Used for detector, QED and hadronísatíon correctíons

Tactorization scale P PDF

The Breit frame

- * Frame where virtual boson is entirely spacelike
- * At lowest order, quark is back scattered
- * Practical High \textbf{E}_t jet events must be at least order α_{s}

Inclusive jets in DIS

- * Study of the inclusive jet cross-section.
- * Cross-sections measured as functions of Et and Q^2

* Excellent agreement between data and NLO over many orders of magnítude.

Inclusive jets in DIS

* α_s extracted with competitive uncertainties over a large range of Et and momentum transfer.

Multijets

- * Study the trijet and dijet cross-sections and their ratio
- * (LO) Three jet processes are of order α_s^2
- * (LO) Two jet processes are of order α_s
- * The α_s dependancy of their ratio is a sensitive test of pQCD.

- * 150 < Q² < 15000 Gev²
 (photon exchange only)
 * Cross-sections with respect
 to Q² show excellent
 agreement.
- * Sufficient accuracy to take ratio, R_{3/2}
- * Small experimental uncertainties - success for HERA!

Multíjets

* Cross-section ratio is very sensitive to the strong coupling.

* Able to extract strong coupling with competitive uncertainties.

* Full HERA2 data set will allow finer binning at higher Q^2 where theory uncertainties are smallest.

* High precision α_s
 extraction. Excellent
 agreement compared
 with World Average
 (PDG)

* Running of strong coupling clear as function

of Q^2

Forward jets

- * HERA extends Xbj region down to 10⁻⁴
- * Parton can índuce QCD cascade, before ínteracting with virtual photon.
- * Interesting region to study parton dynamics

- * NLO only descríbes hígh Pt forward jet data.
- * Perhaps higher orders required c.f. difference between LO and NLO.
- * Other QCD based models perform better in this region

Forward jets

- * Conventional DGLAP calculations order partons in virtuality.
- * Models including breaking of ordering describe data better.
- * Higher order parton emissions required to describe radiation pattern at low X

 $\alpha_{s}(M_{z})$ summary

Process	Alpha_S	Statistical	Systematic		Theoretical	
	(MZ)					
Inclusive DIS	0.1196	± 0.0011	+	0.0019	+	0.0029
(ZEUS)			-	0.0025	-	0.0017
MultíJets	0.1187	± 0.0014	+	0.0022	+	0.0050
(H1)			-	0.0024	-	0.0050
Inclusive DIS	0.1197		+	0.0016	+	0.0046
(H1)			-	0.0016	1	0.0048
Multíjets	0.1179	± 0.0013	+	0.0028	+	0.0064
(ZEUS)			-	0.0046	-	0.0046
HERA	0.1186		+	0.0011	+	0.0050
			-	0.0011	-	0.0050

$\alpha_s(Mz)$ Comparíson

* HERA determinations consistent with other experiments.

* uncertainties are very competitive.

* More data to come from HERA2 = more measurements at higher precision.

Summary and Outlook

- * NLO (usually) descríbes jet physics to high precision.
- * Able to extract competitive α_s from HERA experiments.
- * HERA is a unique facility for QCD studies.
- * 700 pb⁻¹ expected from HERA2.
- * More data and improved theory calculations will allow highest ever precision for jet physics in DIS.
- * An excellent step towards full understanding of backgrounds at LHC.