Proton Structure from HERA

1

Lake Louise Winter Institute 2006 17 – 23 February 2006, Alberta, Canada

Contents

- NLO QCD analysis on SFs and Jets
- \bullet F_L
- Heavy-quark SFs
- High-x
- Low-Q² transition

Deep Inelastic Scattering

DIS is a straightforward tool to probe p structure

→ Momentum fraction of struck parton

Experiment measures Cross-sections: \rightarrow Structure Functions (SFs) $\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4} \times \{y^2(F_2 - F_L)/x + 2(1 - y)F_2/x\}$ Measure in terms of: \rightarrow Mom.frac. of q \rightarrow Spatial resolution
If proton is $\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4} \times \{y^2 + 2(1 - y)\}$

► SFs parameterize target structure, i.e how far from point-like

X Why two structures?

 \rightarrow As seen differently from the two status of the probe $\gamma^*(L, T)$ ²

SFs and PDFs

Theory interprets : SFs = Couplings × Parton Distribution Functions (PDFs)

Determination of PDFs

• pQCD cannot predict x-dependence of PDFs a priori

• But, once the input x-dependence at a certain Q_0^2 is given, DGLAP evolution describes Q^2 dependence of $q(x,Q^2)$

$$\frac{\partial}{\partial \ln Q^2} \left(\frac{\Sigma}{xg} \right) = \alpha_s \begin{pmatrix} P_{QQ} P_{gQ} \\ P_{gQ} P_{gQ} \end{pmatrix} \otimes \begin{pmatrix} \Sigma \\ xg \end{pmatrix}$$
$$\frac{\partial}{\partial \ln Q^2} q_{NS} = \sigma_s P_{QQ} \otimes q_{NS}$$

 \rightarrow Initial PDFs at Q_0^2 are determined by a global fit to various experimental data.

 \mathbb{X} PDF are not observable (but F₂ are)

 \rightarrow Universality should be checked in various processes

At $x=10^{-4}$ to 10^{-1}

► HERA plays significant role, in particular:

- -- Gluon
- -- Sea quarks

6

LHC parton kinematics

PDFs : Remaining issues

Are we done? → No!

① Direct determination of gluon

2 Flavor decomposition of quark PDFs Notice: with the inclusive F₂ (most precise)

- \rightarrow Direct knowledge is:
 - -- Sum of (quark + antiquarks)
- \rightarrow Gluon is indirectly from F₂'s slope
- **③** High $Q^2 : \rightarrow$ DGLAP validity
 - xF3=Σ(q-qbar), valence quarks, arising from Z exchange effects

 \rightarrow See J. List's talk

④ High x : → NP with large mass at LHC, Tevatron

 \rightarrow d/u at x=1 ?

- **(5)** Low-Q² transition : \rightarrow from pQCD to Hadron picture
- **(6)** Very low-x : \rightarrow ln(1/x) resummation (not discussed in this talk)
 - ► New ideas, measurements, techniques, analyses are coming up
 - \rightarrow as you'll see in the following slides!

(1)**Direct determination of gluon** -- Jet @ Hera

-- FL

NLO QCD fit including Jets

ZEUS

Flavor decomposition -- CC

-- Heavy flavor SF

Probe with W-boson

- Flavor selecting nature of CC $\sigma_{CC}(e^+p) \propto x[(1-y^2)(d+s) + (\overline{u+c})] = 0.6$ $\sigma_{CC}(e^-p) \propto x[(u+c) + (1-y^2)(\overline{d+s})] = 0.4$
- In particular, d-quark PDFs:
 -- F₂(NC) ~ 4u + d
 -- u ~ 2d
 - → Has been less determined (v N gives best sensitivity)

CC DIS : Flavor sensitivity

HERA e⁺p Charged Current

GeV

New technique to access high-x

Experimentally difficult as recoiled quark goes close to the beam pipe

Events can be tagged by e
 If we do not see any jet at

 η_{jet} > 0.12 (Et > 12 GeV)
 → Collect such events in
 a single bin, x > x_{Edge}
 → Measure integrated cross
 section in the bin, x > xEdge

● For events with jets:
→ use jet for reconstructing x

← Finer bins as resolution improved

Techniques to access low Q²

Shifted-vertex runs

Special device (beam-pipe CAL)

QED compton, Initial state radiated (ISR) events

Summary

• HERA has provided most precise inclusive structure function measurements, which brought significant improvements to our knowledge on proton structure

• For further more comprehensive and complete understanding of the pQCD and proton structure, new analyses with new techniques, ideas, and large amount of luminosity @ HERA-II are on-going.

- -- ~200 pb⁻¹ already collected @ HERA-II
- -- Possibility to have dedicated low energy runs for F_L
- → Understanding the whole proton structure is a real big project, we have just marked the first step.
- → Stay tuned on the HERA, "super microscope"!