

Heavy quark measurements at HERA

B. Kahle, DESY Hamburg

- Introduction
- Charm measurements
- Beauty measurements
- Contribution to F₂
- Summary and Conclusions

HERA: ep-collisions at H1 and ZEUS

ep center of mass energy:

1992 - 97:	300 GeV
98 - 2005:	318 GeV

Integrated	Luminosity	(e.g.	ZEUS	physics):
------------	------------	-------	------	-----------

Year	e⁺p	e⁻p
96-00 (HERA I)	105 pb ⁻¹	17 pb ⁻¹
03-05 (HERA II)	41 pb ⁻¹	152 pb ⁻¹
06-07 (expected)	about factor 2 more	

Heavy Flavour production mechanism

Dominant process in *ep*-collisions: **Boson-Gluon-Fusion**

photon virtuality, squared momentum

Bjorken scaling variable, for $Q^2 >> (2m_Q)^2$: momentum fraction of p constituent

Two kinematic regimes:

- Photoproduction (γp): γ quasi-real $Q^2 < 1 \text{ GeV}^2$
- Deep inelastic scattering (DIS): $Q^2 > 1 \text{GeV}^2$

Charm tags

Charm in photoproduction

Data described by NLO QCD, data tend to be higher. Measurements much more precise than calculations

NLO vs. LO + parton shower

Charm in DIS

Data described by NLO QCD over 5 orders of magnitude

7

Beauty tag with µ+jets

Double tagging of bb pair

- two direct flavour tags, e.g. $D^* + \mu$ or $\mu + \mu$
 - large bg. reduction, no jets needed

measure total beauty production cross section at HERA:

 $\sigma(ep \rightarrow b\overline{b} + anything) = 16.1 \pm 1.8(stat.) + 5.3 - 4.8(sys) nb$

 $\sigma_{NLO} = 6.8 + 3.0 \text{ nb} \quad (\text{FMNR+HVQDIS})$

Charm contribution to F₂

Beauty contribution to F2

Н

Detector upgrades for HERA II

- upgrades most relevant for heavy flavour production:
- H1 Fast Track Trigger
- ZEUS Micro-Vertex Detector (MVD)

Charm in HERA II data

HERA I "excess" in charm e⁻p/e⁺p cross section at high Q² was statistical fluctuation (as expected)

Beauty in HERA II data

- First preliminary results using new ZEUS MVD:
 - first 30 pb⁻¹ of HERA II data
 - combine muon *p_t^{rel}* with impact parameter (μ+dijet events)
- Outlook: improve by
 ~ order of magnitude and
 new double differential
 measurements possible

15

Summary and Conclusions

- Heavy Flavour production in *ep*-collisions remains interesting testing ground for perturbative QCD
- charm production:
 - high precision data are reasonably described by NLO QCD, in γp data are slightly higher than predictions
 - NNLO or NLO+PS needed for some regions of phase space (γp)
- beauty production:
 - reasonable description at high p_t^{b} getting worse (but still acceptable) at low p_t^{b} ?
 - in DIS data tend to be higher than prediction (e.g. at low p_t , large η)
- Structure Functions $(F_2^{c\bar{c}}, F_2^{b\bar{b}})$:
 - both charm and beauty well described
 - first measurement of $F_2^{b\bar{b}}$
- HERA II performing well and most data are expected to come. Expect improved results soon!

Beauty cross sections vs. Q²

different p_{Tb} scales !

Key	Ref.	Signature	p_T cuts		
Photoproduction					
♦	[18]	$\mu\mu$	low		
*	[19]	$D^*\mu$	low		
*	[20]	$D^*\mu$	low		
\triangle	[21]	2 jets+e	medium		
	[22]	2 jets+ μ	medium		
	[23]	2 jets+ μ	medium		
¢	[16]	tracks	high		
DIS					
\$7	[19]	$D^*\mu$	low		
	[24]	tracks	low		
	[17]	tracks	low		
•	[23]	1 jet+ μ	medium		
0	[25]	1 jet+ μ	medium		

no clear trend

Beauty in DIS

Inclusive lifetime tags

Contribution to the proton structure F_2

Inclusive lifetime tagging is used to determine fraction of $b\overline{b}$ -events to all events

21

Comparison of b and c contributions

Fraction F_2^{bb}/F_2 and F_2^{cc}/F_2 in DIS

 $F_2^{\ bb}$ changes from permill-level (low Q^2) to percent-level (high Q^2)

pQCD approximations

Massive scheme:

- c,b massive
- neglects $[\alpha_s \ln (Q^2/m_{c,b}^2)]^n$
- scale *m*_{c,b}

 α

 e^+

р

rightarrow c, b produced perturbatively (not part of the Proton or Photon)

Massless scheme:

- c,b massless
- resums $[\alpha_{s} \ln (Q^{2}/m_{c,b}^{2})]^{n}$
- scale: *Q*², *p*_t
- \rightarrow *c,b* also in Proton and Photon

- massive at small Q²
- massless at large Q²

NLO vs. LO + parton shower

Inelastic J/w production

J/ψ Colour Singlet (CS) contribution

- directly calculable
- available at LO and NLO

Colour Octet (CO) contribution

- introduced in NRQCD to describe Tevatron data
- not directly calculable
- parameterized from Tevatron
- prediction for HERA, LO only

Inelastic J/w in photoproduction

Inelastic J/y in DIS

Color Octet contribution not really needed to describe HERA data

27