

Heavy Quark Studies at HERA

G. Leibenguth

- o Introduction
- o Charm Production
- o Beauty Production
- o F₂ Contribution
- o Conclusion

The Experiments: H1 and Zeus

Heavy Flavor Production

- Hard scale: $m_b / m_c, Q^2, P_t^2$
- ✓ pQCD applicable
- \checkmark Multi hard scale problem
- $\checkmark \ [\alpha_{\rm s} \ln(Q^2/m_{\rm b}^2)]^n$
- $\Rightarrow \text{Probe a large range of } Q^2$ $\Rightarrow \text{Study interplay of scales}$
- 2 kinematics regimes:
- ✓ Photoproduction (γp): Q² < 1 GeV²
- ✓ Deep Inelastic Scattering (DIS):
 Q² > 1 GeV²

pQCD approximation

Massive approach: Fixed order calculation in α_s , with $m_q \neq 0$

✤HQ produced only dynamically

Massless approach Resums in α_s , with $m_q = 0$ (HQ is flavor active in structure function) Reliable at $p_t >> m_q$

Intermediate (or variable) scheme : massive at low Q^2 , massless at high Q^2

Heavy Quarks studies at HERA

Experimental Conditions

Total production rate at HERA: σ_{uds} : σ_{charm} : $\sigma_{beauty} \sim 2000$: 200 : 1 Main reason for beauty suppression: phase space,

$$\mathbf{X}_g \ge \frac{m_Q^2}{E_\gamma \cdot 920 \; \mathbf{GeV}}$$

Heavy Quarks studies at HERA

Charm Overview

yg Charm Production at HERA

Boson Gluon Fusion Dominate (@LO) :

 \Rightarrow Direct process $\gamma g \rightarrow cc$ dominates, in γp resolved contribution plays a significant role

Factorisation: $\sigma = \text{proton PDF} \otimes \sigma_{\gamma g \rightarrow q q} \otimes \text{photon PDF} \otimes \text{fragmentation function}$

Heavy Quarks studies at HERA

Charm Tagging

✓ Via D* resonance reconstruction :
 D*→K⁻π⁺π⁺, knowledge of kinematics,
 signal and background
 ✓ Via lifetime tagging (vertex detector)

G. Leibenguth,

Heavy Quarks studies at HERA

Charm spans over Q²

 \checkmark Q² evolution describes data over 4 orders of magnitude!

G. Leibenguth,

Heavy Quarks studies at HERA

D* yp inclusive cross sections

NLO "massive" and "variable scheme"

Charm Dijets

Charm Jet Production

D* and jet production

 $(x_{\gamma}^{obs} < 0.75):$

- Tag second hard parton by a jet (k_t algorithm)
- ⇒ Provide an additional hard scale

jet $\Delta \phi(jj)$ lowest order: back-to-back $(\Delta \phi(jj) \sim \pi)$

NLO: shape wrong, normalization ok

LO + PS: shape ok, normalization off

Charm Fragmentation

H1 hemisphere method: $<\sqrt{(s)}$ $\approx 10 \text{ GeV}$ $z = \frac{(E+p_L)_{D^*}}{\sum_{bern}(E+p)}$ $OPAL < \sqrt{(s)} \approx 91.2 \text{ GeV}$ $z = 2E_{D*}/\sqrt{s}$ $CLEO < \sqrt{(s)} \approx 10 \text{ GeV}$ $z = p_{D*}/p_{max}$

HERA data: competitive precision with e⁺e⁻ data!

Fragmentation Functions

Fit theoretical prediction to the data, extract MC parameter \Rightarrow values of ε parameters (@ LO): *Peterson* : f

$$(z) \sim z^{-1} [1 - \frac{1}{z} - \frac{\varepsilon}{1-z}]^{-2}$$

Zeus: photo-production data ZEUS: $\varepsilon = 0.064 \pm 0.006$, H1(HEM): $\varepsilon = 0.018 \pm 0.004$ Hem method in DIS

Fragmentation Fractions

- All charm decay channels studied
- Universality of charm fragmentation observed
- Up and down quark produced equally => strong isospin invariance holds

$$R_{u/d} = \frac{c\overline{u}}{c\overline{d}}$$

1

G. Leibenguth,

ZEUS (prel.) DIS ZEUS (prel.) yp

H1 DIS

ALEPH

OPAL DELPHI

0

 $R_{u/d}$

 $1.46 \pm 0.17 \substack{+0.10 \\ -0.34}$

2

Beauty Measurements

	Photo-	DIS	DIS
	production	$Q^2 > 1 GeV^2$	Q ² >150 GeV ²
$P_t > 0 \text{ GeV}$	μμ	Inclusive	Inclusive
	D*µ	lifetime	lifetime
$P_t > 6 \text{ GeV}$	µ+jets	µ+jets	μ+jets
$P_t > 11 \text{ GeV}$	Jet-jet		
	Incl. lifetime		

Beauty Tag, Muon and Jets

 $\boldsymbol{\mu}$ from semileptonic b decays, separation power from:

- ✓ B mass: P_t^{rel} (p_t of μ w.r.t jet axis)
- ✓ Large b lifetime: impact parameter δ

Inclusive Lifetime Analysis

- Use all tracks ($p_t > 0.5$ GeV) with silicon information
- Significance of signed impact parameter: δ

$$S = \frac{\delta}{\sigma(\delta)}$$

- Subtract negative side from $\frac{2}{2}$ positive, enhance charm and beauty $\frac{2}{2}$
- Example: tracks with 2nd highest significance

Double Tagging: D*µ and µµ

- D*µ: Separate charm and beauty with charge and/or angular correlations
- μμ: b-contribution from excess of unlike sign muon pairs

G. Leibenguth,

Heavy Quarks studies at HERA

μ+Jets: Beauty in γp

NLO (FNMR): shape close, agreement within errors (H1 excess at low P_t^{μ} , to compare with yellow band)

µ+Jets: Beauty in DIS

G. Leibenguth,

Heavy Quarks studies at HERA

D*µ correlations @ H1

Beauty: $\sigma_b^{vis} (ep \rightarrow eD^*\mu X) =$ $206 \pm 53 \pm 35 \text{ pb}$ (NLO: 53^{+14}_{-9} pb)

Charm: $\sigma_{c}^{vis}(ep \rightarrow eD^{*} \mu X) =$ $250 \pm 57 \pm 40 \text{ pb}$ (NLO: $286^{+159}_{-59} \text{ pb}$)

Charm: good agreement, beauty: predictions too low

µµ correlations @ Zeus

Exploit data for background determination / subtraction

 $M_{\mu\mu}$ > 3.25 GeV => 2 μ from different b's LO: shape ok, norm too low NLO: agrees within errors

Beauty Production Summary

- General trend: slight overshoot of data versus massive NLO
- difference between QCD calculations
- need Hera II data for improved precision

Charm Contribution to e-p XSect

Define charm contribution to proton structure function :

$$\frac{d^2 \sigma^{ep \to c\bar{c}X}}{dx dQ^2} \propto F_2^{c\bar{c}}(x,Q^2)$$

In analogy to inclusive structure function:

$$\frac{d^2 \sigma^{ep}}{dx dQ^2} \propto F_2(x, Q^2)$$

Recent measurement performed via lifetime tagging (before, done by extrapolation of D* cross section)

 F_2^{cc}

Good agreement with predictions using scaling violations At low Q^2 , charm starting to constrain gluon density

Beauty Contribution to F₂

- First measurement
- Rise with g(x) (smaller x and larger
- First NNLO calculation (R. Thorne) agree with HERA data, lower than NLO (~ 40%)

Detector Upgrade for HERA II

Most relevant upgrade for heavy flavor production:

G. Leibenguth,

Heavy Quarks studies at HERA

Detector Upgrade for HERA II

Most relevant upgrade for heavy flavor production:

- ► H1 Fast Track Trigger
- > ZEUS Micro Vertex

Detector

First Zeus impact parameter analysis!

G. Leibenguth,

Heavy Quarks studies at HERA

Summary

- Heavy Flavor production: test of pQCD
- Charm production:
 - ✓ High precision data described by NLO
 - ✓ NNLO or NLO+PS needed at least in some phase space region
- Beauty description:
 - ✓ Reasonable agreement at high Pt, getting somewhat worse at lower pt
 - ✓ Data tend to be larger than NLO predictions
- First measurement of F₂^{bb} Structure Functions
- Hera II now on track, most data are still coming => higher precision in view