HERA Physics Inclusive measurements

Hans-Ulrich Martyn RWTH Aachen & DESY

- DIS ep kinematics
- Polarised cross section measurements
- Structure functions & parton densities
 - QCD & electroweak fits
 - quark couplings & strong coupling
 - heavy flavour structure functions
 - diffractive parton densities
- Searches isolated lepton events, multi-leptons
- Future measurement of F_L

HERA Physics - Inclusive Measurements

HERA performance

HERA II

•
$$E_e=27.6~GeV$$
, $E_p=920~GeV$, $\sqrt{s}=320~{
m GeV}$

• Detectors & luminosity upgrade

- Longitudinally polarised lepton beams typically $\mathcal{P}_e\simeq 30-40\%$, $t_{\mathcal{P}}\sim 30$ min helicity flip every 2-3 months
- Schedule
 - switch to positrons July collect ${\cal L} \sim 100 \, {\rm pb}^{-1}$
 - measure F_L at lower $E_p = 460~{
 m GeV}$ run 3 months for ${\cal L} = 10~{
 m pb}^{-1}$
 - end of HERA data taking June 2007

Kinematics of ep interactions

• NC $e^{\pm}p
ightarrow e^{\pm}X$

$$egin{array}{rll} rac{{
m d}^2 \sigma_{NC}^\pm}{{
m d}x\,{
m d}Q^2} &=& rac{2\pilpha^2}{xQ^4} \left[Y_+ ilde{F}_2 \mp Y_- x ilde{F}_3 - y^2 ilde{F}_L
ight] \,\equiv\, rac{2\pilpha^2}{xQ^4} \, Y_+ ilde{\sigma}_{NC}^\pm \ Y_\pm = 1 \pm (1-y)^2 \end{array}$$

 $egin{array}{lll} ilde{F}_2 & ext{dominant contribution in LO QCD} \ x ilde{F}_3 & \gamma Z ext{ interference at } Q^2 \sim m_Z^2 \ ilde{F}_L & ext{sensitivity at low } Q^2 ext{, high } y \end{array}$

$$\{F_2, F_2^{\gamma Z}, f_2^Z\} = x \sum_q \{e_q^2, 2e_q v_q, v_q^2 + a_q^2\}(q + \bar{q}) \ \{xF_3^{\gamma Z}, xF_3^Z\} = 2x \sum_q \{e_q a_q, v_q a_q\}(q - \bar{q}) \ \sim lpha_s xg(x, Q^2)$$

• CC $e^{\pm}p
ightarrow
u X$

$$\frac{\mathrm{d}^2 \sigma_{CC}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{G_F^2}{4\pi x} \left[\frac{m_W^2}{Q^2 + m_W^2} \right]^2 \left[Y_+ \tilde{W}_2 \mp Y_- x \tilde{W}_3 - y^2 \tilde{W}_L \right]$$

$$\begin{split} \tilde{\sigma}_{CC}^+ &= x[(\bar{u}+\bar{c})+(1-y)^2(d+s)]\\ \tilde{\sigma}_{CC}^- &= x[(u+c)+(1-y)^2(\bar{d}+\bar{s})] \end{split}$$

sensitive to d quark at high x sensitive to u quark at high x

NC & CC cross sections

- Excellent agreement with SM prediction over many orders of magnitude
- CC cross section suppressed at low Q^2 by W propagator
- NC and CC comparable cross sections at high $Q^2 \sim M_W^2$
- $\sigma^{e^-p} > \sigma^{e^+p}$ at high Q^2 electroweak effects
- \Rightarrow Stringent limits on eq compositeness

quark radius $R_q < 1\cdot 10^{-18}$ m LQ's $M_{LQ}/\lambda\gtrsim 1\,{
m TeV}$ LED $M_S>0.8\,{
m TeV}$

CC cross section

- $ullet \, u,d$ quark separation at high x dominating for x>0.2, consistency check wit $xF_3\sim 2u_v+d_v$
- e^+p sensitive to d quark, particularly valuable (free of nuclear effects of eD scattering)
- e^-p sensitive to u quark, new HERA II meas. improve u_v

HERA Charged Current unpolarised

ZEUS $e_L^- p$ polarised

HERA Physics - Inclusive Measurements

NC polarised cross sections

Measurement of xF_3

$$x ilde{F}_3 = (ilde{\sigma}_{NC}^{-} - ilde{\sigma}_{NC}^{+})(Y_+/2Y_-)$$

$$xF_3^{\gamma Z} = x ilde{F}_3/[-a_e\kappa_W/(Q^2+M_Z^2)]\sim 2u_v+d_v$$

HERA I $15 \text{ pb}^{-1} e^{-}, 100 \text{ pb}^{-1} e^{+}$ HERA II $120 \text{ pb}^{-1} e^{-}, 50 \text{ pb}^{-1} e^{+}$ corrected for polarisation effects precision increased by 20% neglect pure Z contribution (small) & correct for propagator (Q^2) terms

 \rightarrow Test x dependence of valence quarks

NC cross section at very high x

ZEUS technique to access high x region

 Q^2 well measured by electron jet in detector x from jet $E_T > 10 \,\mathrm{GeV}, \theta > 0.12$ jet in beampipe integrate σ over $x_{edge}(Q^2) < x < 1$ discard ≥ 2 jet events

Still large uncertainies at high x

Input to PDF fits, integrated points tend to lie above CTEQ6D

Z

p remnant

e_beam

jet FCAL electron

p beam

BCAL RCAL

p

CTD

Structure functions & parton densities

- HERA data well described by NLO QCD
- parton densisties parametrised at some Q_0^2 e.g. $xf(x) = ax^b(1-x)^c(1+dx)$ Q^2 evolution using DGLAP in NLO
- low x sea, gluon constrained by F_2 @ low Q^2
- high $x \, u, d$ valence constrained by high Q^2 NC & CC cross sections
- medium x gluon constrained by jet data (DIS jets and γp di-jets)

boson gluon fusion, QCD Compton

- correlations between $lpha_s(Q^2)$ and $g(x,Q^2)$ resolved by using wide range of x and Q^2
- consistent analysis within a single experiment, advantage for treatment of error correlations

Combined QCD & EW fits

slight differences in g(x) at $x\sim 0.01$

combined H1/ZEUS analysis in progress

H-U Martyn

HERA Physics - Inclusive Measurements

polarised e^-p reduce $u_v(d_v)$ uncertainty

Light quark couplings

Combined QCD & EW fit in space-like region: $a_q \leftrightarrow xF_3$ and $v_q \leftrightarrow F_2^{pol}$ H1 HERA I unpolarised data, ZEUS HERA II polarised data

Precision on axial and vector couplings of \boldsymbol{u} and \boldsymbol{d} quarks comparable with LEP, ambiguity resolved

HERA Physics - Inclusive Measurements

Z

QCD fits, DIS inclusive, jets and α_s

ZFUS

• ZEUS (prel.) 98-00

40

E^{jet}_{T.B} (GeV)

100

120

14

Q / GeV

---- NLO ($\mu_{\mathbf{R}} = \mathbf{E}_{T,\mathbf{B}}^{jet}$)

- NLO ($\mu_{\mathbf{p}}=\mathbf{Q}$)

dc/dE^{jet} (pb/GeV)

10⁶

10⁵

10

H-U Martyn

HERA Physics - Inclusive Measurements

Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$

Heavy quark production via boson gluon fusion

Flavour ID:

 D^* reconstruction (charm)

Impact parameter of track to vertex (charm & bottom) using Si tracker, minimal extrapolation needed to extract $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

good agreement with SM

 $F_2^{c\bar{c}}$

Measurement of $F_2^{car{c}}$ and $F_2^{bar{b}}$

Diffractive DIS

Diffractive inclusive cross section

$$egin{array}{lll} rac{{\mathrm d}^3 \sigma_{NC}^{diff}}{{\mathrm d} x_{I\!\!P} \, {\mathrm d} eta \, {\mathrm d} Q^2} & \propto & rac{2\pilpha^2}{xQ^4} \, F_2^{D(3)}(x_{I\!\!P},eta,Q^2) \ F_2^D(x_{I\!\!P},eta,Q^2) & = & f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(eta,Q^2) \end{array}$$

extract DPDF and xg(x) from scaling violation Large kinematic domain $3 < Q^2 < 1600 \,\mathrm{GeV}^2$ Precise measurements sys 5%, stat 5–20%

_

Diffractive parton densities

diffractive di-jet production

Combined fit of F_2^D and di-jet data constrain quark and in particular gluon densities in the range $0.05 < z_{I\!\!P} < 0.9$

gluon carries $\sim 70\%$ of the momentum of the colourless exchange

Sensitivity to gluon at scale Q_0

$$zf_g(z) = A_g z^{B_g} (1-z)^{C_g}$$

 F_2^D not sensitive to B_g DPDF Fit $\qquad zf_g(z)=A_g(1-z)^{C_g}$ DPDF Fit B $\qquad zf_g(z)=A_g$

HERA Physics - Inclusive Measurements

Events with isolated lepton and missing p_T

HERA II: excess persists in e^+p data only

Events with isolated leptons and missing p_T

Multi-lepton events

H1 investigates high p_T lepton topologies $ee, \mu\mu, e\mu, eee, e\mu\mu$ HERA I+II data $\mathcal{L}=275~{
m pb}^{-1}$

Prospect: Measurement of F_L

$$\sigma_r=F_2(x,Q^2)-rac{y^2}{Y_+}F_L(x,Q^2)$$

Longitudinal structure function gives direct access to poorly known gluon density at low x, theoretically very uncertain, important to understanding of pQCD

$$F_{L} = \frac{\alpha_{s}}{4\pi}x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3}F_{2} + 8\sum_{x}e_{q}^{2}\left(1 - \frac{x}{z}\right)zg\right]$$

sizeable at large y > 0.6

Measure cross section at same x,Q^2 and different y, change $y=Q^2/xs$ by lowering s with $E_p=460\,{\rm GeV}$

H1 + ZEUS: F_L is a must for HERA

agreed to collect $\mathcal{L} = 10 \text{ pb}^{-1}$ 3 months data taking $Q^2 = 5 - 40 \text{ GeV}^2$, $x = (0.1 - 4) \cdot 10^{-3}$ expect moderate precision $\delta F_L \sim 0.05$ corresponding to 5 st. dev depending on F_L

Summary & outlook

- Beautiful inclusive HERA data available over 4 orders of magnitude in x and Q^2
- Rich physics output centered around QCD, but electroweak physics become interesting
- Expect considerable progress
 - e^-p data to be analysed, e^+p data to be collected
 - more involved and sophisticated QCD analyses
 combine DIS inclusive & exclusive processes, H1 & ZEUS data, ...
- Searches for a discovery ongoing
 - isolated lepton and multi-lepton events, leptoquarks, RPV Susy, …
- Low E_p run and measurement of F_L towards end of HERA
- ⇒ Precision measurements of proton structure functions & parton distributions provide solid basis for LHC physics