Xavier Janssen - Université Libre de Bruxelles

On behalf of H1 and ZEUS Collaborations

Inclusive measurements on diffractive proceesses in ep collisions

XXXVI International Symposium on Multiparticle Dynamics

Paraty, Brazil, 2nd-8th Sept., 2006

Inlusive diffraction at HERA

Proton stays intact and loses small momentum fraction

- Q^2 Photon virtuality
- x Bjorken-x

 β

t

- $\mathcal{X}_{I\!\!P}$ Momemtum fraction of colour singlet exchange
 - Fraction of exchange momemtum of struck q
 - 4-momemtum transfer squared
- $W\,$ Photon-proton cms energy

 $x \; = \; x_{I\!\!P} \; \beta$; $W = Q^2 \left(\frac{1}{x} - 1 \right)$

Main observable: Reduced cross section σ_r^D

$$\frac{\mathrm{d}^{4}\sigma^{ep\to eXp}}{\mathrm{d}x\mathrm{d}Q^{2}\mathrm{d}x_{I\!P}\mathrm{d}t} = \frac{4\pi\alpha^{2}}{xQ^{4}} Y_{+} \sigma_{r}^{D(4)}(x, Q^{2}, x_{I\!P}, t)$$

$$\sigma_{r}^{D(4)}(x, Q^{2}, x_{I\!P}, t) = F_{2}^{D(4)} - \frac{y^{2}}{Y_{+}}F_{L}^{D(4)} \approx F_{2}^{D(4)}$$

Selection Methods

H1: Large Rapidity Gap Method

ZEUS: M_X Method

- Gap spanning $3.3 < \eta < 7.5$
- Measure kinematic from hadrons in central detector
- Some proton dissociation \rightarrow Correct to $M_Y < 1.6$ GeV

• Flat vs ln M_X^2 for diffractive events

- non-diffracive events substracted from fit
- Proton dissociation $ep \rightarrow eXY$ corrected to $M_Y < 2.3 \text{ GeV}$

Selection Methods

- Free of proton dissociation bkgd
- p 4-momentum measurment $\rightarrow t$
- Low statistic (acceptance)

Factorization Properties

 QCD hard scattering collinear factorization (Collins) at fixed x_{IP} and t

 \rightarrow DGLAP applicable for Q^2 evolution.

 $d\sigma_i(ep \rightarrow eXp) =$ $f_i^D(x, Q^2, x_{I\!\!P}, t) \otimes \mathrm{d}\hat{\sigma}^\mathrm{i}(\mathbf{x}, \mathbf{Q}^2)$

 "Proton vertex" factorisation of x, Q² from x_{IP}, t (and M_Y) dependences

No firm basis in QCD !

H1 Published Data Overview

H1 Rapidity Gap vs Leading Proton data

- Agreement between LRG ans FPS methods taking into account the ratio $\sigma(M_y < 1.6 \text{ GeV})/\sigma(Y = p) = 1.23 \pm 0.03$ (stat.) ± 0.16 (syst.) to correct for proton dissociation
- ZEUS-LPS and H1-FPS normalizations agree to 8 %

ZEUS Diffractive Cross Section (M_X Method)

ZEUS *M_X* Method vs H1 Rapidity Gap Data

$t \ {\rm dependence} \ {\rm from} \ {\rm FPS} \ {\rm and} \ {\rm LPS} \ {\rm data}$

• $B(x_{I\!\!P})$ data constrain $I\!\!P$, $I\!\!R$ flux in proton vertex factorization model

- Regge motivated form: $f_{I\!\!P/p}(x_{I\!\!P},t) = \frac{e^{B_{I\!\!P}t}}{x_{I\!\!P}^{2\alpha_{I\!\!P}(t)-1}}; \alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$
- Fitting H1 data to $B = B_{x_{I\!\!P}} + 2\alpha'_{I\!\!P} \ln(1/x_{I\!\!P})$ gives:

 $B_{x_{I\!\!P}} = 5.5^{-2.0}_{+0.7} \text{GeV}^{-2} \qquad \alpha'_{I\!\!P} = 0.06^{+0.19}_{-0.06} \text{GeV}^{-2}$

H1: $\sigma_{II}^{D(3)}(\beta, Q^2, x_{IIP})$ at fixed $x_{IIP}(x_{IP} = 0.003)$

Xavier Janssen – p.10

H1: $\sigma_r^{D(3)}(eta, Q^2, x_{I\!\!P})$ at fixed $x_{I\!\!P} \,(x_{I\!\!P} = 0.003)$

- Data compared with "H1 2006 DPF fit" + error band
- Large positive Q^2 scaling violation $\overline{}^{3}$ up to high β values
- Small F_L^D contribution at low β

H1: $\sigma_r^{D(3)}(\beta, Q^2, x_{I\!\!P})$ at fixed $x_{I\!\!P}(x_{I\!\!P} = 0.01)$

QCD Analysis of H1 Data

- Fit H1 LRG data in fixed x_{IP} binning using NLO DGLAP evolution of DPDFs (massive scheme) to describe x, Q² dependences
- Proton vertex factorization framework assumed
- Fit all H1 LRG data with $Q^2 \ge 8.5 \text{ GeV}^2$, $M_X > 2 \text{ GeV}$, $\beta \le 0.8$ \longrightarrow Ensure stability of fit with variations of kinematic boundaries
- Parametrize: quark singlet: $z\Sigma(z,Q_0^2) = A_q \ z^{B_q} \ (1-z)^{C_q}$
 - gluon density: $zg(z, Q_0^2) = A_g (1-z)^{C_g}$ gluon insensitive to B_g
 - $\alpha_{I\!\!P}(0)$ (describes $x_{I\!\!P}$ dependence)
- Fix: use world average for $\alpha_s(M_Z) = 0.118$
 - sub-leading $I\!\!R$ flux parameters taken from previous data
 - sub-leading $I\!\!R$ PDFs from Owens- π but free normalization
- Small number of parameters in DPDFs \longrightarrow Need to optimize Q_0^2 wrt χ^2

H1 2006 DPDF fit results

• Fit A:
$$Q_0^2 = 1.45 \text{ GeV}^2$$

 $\chi^2 \sim 158/183 \text{ dof}$

- Singlet constrained to $\sim 5\%$
- Gluon to $\sim 15\%$ at low z
- Gluon error band blowing up at highest *z*

• Fit B:
$$zg(z, Q_0^2) = A_g$$

 $\chi^2 \sim 164/184 \text{ dof}$

- Singlet very stable
- Gluon similar at low z
- Gluon change at high z

 \rightarrow New Diffractive PDFs available \rightarrow Lack of sensitivity to gluon at high z

H1 Fit: High z sensitivity to gluon

• As there are only singlet quarks, the evolution eq. for F_2^D is

- At low β , evolution driven by $g \rightarrow qq$
 - \longrightarrow strong sensitivity to gluon
- At high β, relative error on derivative grows, q → qg contribution becomes important → sensitivity to gluon is lost

Diffractive Charged Current Cross Section

Sensitive to flavour decomposition of quark singlet (unconstrained by Neutral Currents)

Agreement with H1 2006 DPDFs (assumes $u = d = s = \overline{u} = \overline{d} = \overline{s}$) but statistical precision very limited so far

Diffractive / Inclusive DIS Ratio

Ratio is flat (fit A + B ln Q²)
 except at high β (low M_X)
 ↔ derivative ~ 0

Xavier Janssen – p.15

Diffractive / Inclusive DIS Ratio

- Ratio is flat (fit A + B ln Q²)
 except at high β (low M_X)
 ↔ derivative ~ 0
- Similar results from ZEUS

H1: Gluon Momentum Fraction

At low x, quark: gluon ratio $\sim 70\%/30\%$, as in inclusive case

Effective Pomeron Trajectory Intercept

 $O^2 (GeV^2)$

10 ⁻¹

ß

H1: Combined fit with diffractive dijets

• Sensitivity to gluon at high z

 \rightarrow Combined QCD fit to dijets and inclusive data to constrain gluon at high z

H1: Combined fit with diffractive dijets

- Sensitivity to gluon at high z
 - → Combined QCD fit to dijets and inclusive data to constrain gluon at high z
- Fit successfull: $\chi^2 = 196/217$ and stable at high z

New H1 Data with Rapidity Gap Method

H1 data 97 H1 data 99-00 (prelim.) H1 published data H1 data 2004 (prelim.) β**=0.04** β**=0.65** β=0.01 β**=0.1** β**=0.2** β**=0.4** Q² [GeV² D(3) ¹ 0.05 لام الم . ∰ † +_{+ +} • H1 Prelim. 99-00, 34 pb⁻¹ 12 ÷*+ **** 4**9**4994 ***** $10 < Q^2 < 105 \text{ GeV}^2$ 0.05 ***** 15 ±•• ***. ±...... 200e • • H1 Prelim. 2004, 34 pb⁻¹ 0.05 20 **...** $17.5 < Q^2 < 105 \text{ GeV}^2$ n 0.05 25 ±.... Large increase in statistics 0.05 35 ******* 0.05 fa . i, [‡]q_{y≜}+ 45 i... ********* Consistent with publised data 0.05 H1 Collaboration 60 ψŧ **t** ┤≵<mark>↓</mark>↓ 0.05 90 」^{‡‡}ŧ† ↓<mark>↓</mark>↓ n 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ -3 10 XIP

CONCLUSION

- H1 diffractive measurements (FPS and LRG methods) published
 - hep-ex/0606003 and hep-ex/0606004 (accept. by EPJC)
 - Data from both methods agree in detail
 - Good agreement with ZEUS-LPS data
- New preliminary H1 data with large statistics
- Proton vertex factorization provides a good approximation for the $x_{I\!P}$ dependence (except maybe at high Q^2 , cf ZEUS data)
- Ratio diffractive/inclusive DIS measured
 - Flat with Q^2 and W except at high β (i.e. low M_X)
- Diffractive PDFs extracted from NLO QCD fits to H1 data
 - Quark singlet very well constrained ($\sim 5\%$)
 - Gluon constrained to $\sim 15\%$, but poorly known at high z
 - Combined fits with diffractive dijets helps to constrain the gluon at high z