Moscow ICHEP06

July 29th, 2006

Charm and Beauty Photoproduction at HERA

(nisq2, birbsM sh smonòtuA babisrevinU) anardmaS leunsM

On Behalf of the ZEUS and H1 Collaborations

Introduction : charm and beauty production in ep collisions

 $) \sim \sim \sim \sim$

charm excitation

 \Rightarrow direct processes dominate, in photoproduction ($Q^2 \sim 0$) resolved play significant role

 $\sigma = \operatorname{proton} \operatorname{PDF} \otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes \operatorname{photon} \operatorname{PDF} \otimes \operatorname{fragmentation}$ **Factorisation**

* Cross section is directly sensitive to the gluon density in the proton

Moscow ICHEP06

- snoitoiberge \Rightarrow useful scale pOOp scale predictions * m = 0

⇒ charm/beauty production sensitive to these pieces

7

charm excitation

Ð

7

$$f(c \to D) = \frac{\sum_i \sigma(D_i)}{\sigma(D)}$$

⇒ all fragmentation fractions in agreement with world average : universality \Rightarrow accurate measurements at HERA : errors competitive

f(c→Λ°)

١.0

0

0.2

2.0-

0

0'3

1.0-

.dmoɔ ⁻ə⁻ə

d∕ s∩∋z

.dmoɔ ˈə⁺ə

SIG 1H

.dmoɔ ˈə⁺ə

SIQ 1H

d∕r SU∃Z

4.0

D^* and dijet photoproduction

*d svisuloni :qy

LΗ

SNJAWD +++

— ЕМИВ

eted -

- \bullet D^* selection in photoproduction
- theo. uncertainties larger than exp. precision measurement -
- data well described by NLO

• c/b events selected using vertex detector

ullet \sim parton, had. uncertainties suppressed

7 **6.**0

ک ۱.5

dơ/dp_t(D*) [nb/GeV]

2

10.₅

php : γ and parton collide head-on \Rightarrow if no gluon emission, $2 \rightarrow 2$ process, "back to back" final state χ'

seritive to gluon radiation?

- $(\mathfrak{I}\mathfrak{I}, {}^{*}\mathfrak{U})\phi \Delta$ ni noitose section \bullet
- only 25% from back to back configurations (i.e. $\Delta \phi \sim 180^\circ)$
- ⇒ significant contribution from higher order QCD radiation
- ullet VLO calculation does not describe region $\Delta \phi \sim 100^\circ$
- sensitivity to higher order contributions \Leftarrow

uonig

- $\overset{}{\boldsymbol{\eta}}_{+} \overset{}{\boldsymbol{\eta}} \leftarrow \overset{}{\boldsymbol{\eta}} / \overset{}{\boldsymbol{\eta}} \overset{}{\boldsymbol{\eta}} \overset{}{\boldsymbol{\eta}} \overset{}{\boldsymbol{\eta}} \overset{}{\boldsymbol{\eta}} \overset{}{\boldsymbol{\eta}} \bullet d \boldsymbol{\vartheta} \bullet$
- decay angular distributions ("helicity") λ, ν
 measured using HERA I+II data

 \Rightarrow distributions not dependent on parameters affecting the absolute normalisations of cross section $(m_c, \alpha_s, ...)$: main source of theo. uncertainties gone

- comparison to LO CS and CS + CO models \Rightarrow the two models differ at high $p_T(J/\psi)$, where statistics is poor
- 0.0 < z rol vino lebom CO mort anoitaiveb \Leftarrow

-1.5 1 2 3 4 5 6 7 8 9 10 Pr (GeV)

● ZEUS (prel.) 96-05 (241 pb⁻¹)

----- BKA (FO' C2)

ВКА (ГО' C2+C0)

G.IL

ι-

6.0-

0

G.0

G'1>

tneve \overline{dd} of event.

- Reconstruction of B in particular decay channels does not work : $B.R \sim 10^{-4}$ Use semileptonic decays : μ in final state
- 1.1.1

get u^*U : noitonborg dd

 $ep \to e \stackrel{h}{b} X \to e \stackrel{h}{D^*} \mu X' \Rightarrow$ enriched $\stackrel{h}{b}$ sample, backgrounds strongly suppressed

 $V_{9} = 0.1 < (*U)_T q$, $V_{9} = 1.4 < (\mu)_T q$ $rac{T}{T}$ can measure up to very low p_T

•
$$\Delta R(D^*, \mu) = \sqrt{(\Delta \Delta)^2 + (\Delta \Delta)^2}$$

, SIG bus not out of the second of the secon visible and extrapolated b quark cross section

 \Rightarrow measurements exceed the NLO predictions, but compatible within the errors

SUJ

⇒ nearly full bb phase space available • larger statistics, lower p_T threshold than $\mathbf{D}^* \mu$

- measure total bb cross section (i.e, very small extrapolation in cross sections)
- $qu \frac{2.1}{0.8+} 8.9 : OIN$ dn $\frac{\epsilon. d+}{8. k-} (t b t s) 8.1 \pm 1.81 = (\overline{d} d)_{TOT}$
- measure differential cross sections theo. prediction $2^{-1.7}$ and $2^{-1.0}$ lower than measurement $\overset{0}{3}_{2.1-8}$.

but underestimate the data ,∍qsha ni shape, to stree in shape,

30

52

50

3L

0L

b^L_B (GeΛ)

04

32

АЯЭН

- Charm fragmentation fractions/ratios and fragmentation function measured
- → accurate measurements : HERA errors competitive
- \rightarrow Evidence that charm fragmentation is universal in e^+e^- and ep
- slisted etter and a slist the • Description of charm cross sections by QCD good in general,
- modulations contained the need for higher order calculations \rightarrow Charm γp and jets showing the need for higher order calculations • New measurements : ... give more details of final state/event kinematics
- (...OJN@OM) bebeen stnemologies (MC@NLO...)
- \rightarrow more precise data needed to constrain the theories but consistent within the uncertainties , OLN shift production the tendency of the data is to be higher than the NLO,

13