Leptoquarks and Contact Interactions

Jolanta Sztuk-Dambietz Hamburg University

International Conference on High Energy Physics Moscow, July 29th, 2006

<u>Outline:</u>

- High- Q^2 DIS \Rightarrow New Physics
- Leptoquarks
 - ⇒ Leptoquark Model
 - ⇒ Invariant Mass Spectra
 - \Rightarrow LQ limits
- Contact Interaction
 - \Rightarrow Compositeness models
 - ⇒ Large Extra Dimensions
 - \Rightarrow Quark form factor
 - ⇒ Heavy Leptoquarks
- Summary

Introduction

Presented results

Year		$\langle P \rangle$	H1	ZEUS					
HERAI									
1994-97	e^+p	-	37 pb ⁻¹	48 pb ⁻¹					
1998-99	e^-p	-	$15 { m pb}^{-1}$	$16 \ \mathrm{pb}^{-1}$					
1999-00	e^+p	-	$65 \ \mathrm{pb}^{-1}$	$64 \ \mathrm{pb}^{-1}$					
	HERAII								
2003-04	LH e^+p	-0.41	-	11.5 pb ⁻¹					
2003-04	RH e^+p	+0.32	-	$12.3 \ { m pb}^{-1}$					
2004-05	$LH\;e^-p$	-0.27	$60 \ { m pb}^{-1}$	$78.8 \ { m pb}^{-1}$					
2004-05	$RH\;e^-p$	+0.33	32 pb ⁻¹	42.7 pb ⁻¹					

where: P - is electron beam polarization

HERA II:

- \Rightarrow longitudinally polarized lepton beam
- $\Rightarrow e^- p$ data sample much more than in HERA I
- \Rightarrow equal sharing between e^+p and e^-p

first results presented here!

 y - fractional energy of the incoming lepton transfered to the proton in the proton's rest frame

Introduction to the Leptoquark Model

Resonant production in $e^{\pm}p$

LO

e

e(v)

LEPTOQUARKS:

Scalar or vector color triplet bosons carrying L and B numbers

 \Rightarrow Fermion number F = 3B + L = 0,2

Buchmüller-Rückl-Wyler (BRW) model

- $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- lepton and baryon number conservation
- strong bounds from rare decays \Rightarrow either left- or right-handed couplings
- family diagonal if not $\Rightarrow LFV$
- \Rightarrow 7 scalar and 7 vector leptoquarks:
 - All 14 LQ \Rightarrow $LQ \rightarrow eq'$
 - 2 scalar and 2 vector LQ couple to both eq and νq

Introduction to the Leptoquark Model

The total $e^{\pm}p \rightarrow \nu(e)X$ cross section:

$$\sigma(e^{\pm}p) = \sigma_{SM} + \sigma_{u/SM}^{Int} + \sigma_{s/SM}^{Int} + \sigma_u + \sigma_s$$

For small λ and $M_{LQ} \leq \sqrt{s}$: s-channel dominates \downarrow

LQ contribution to the SM \Rightarrow resonance in M_{lj} distribution

In the general case (high masses, high couplings) all cross-section terms are important $e^-p \Rightarrow F=2 LQ, e^+p \Rightarrow F=0 LQ$ (valence q \gg sea q at high x)

Angular distribution:

 $y = 0.5(1 - \cos\theta^{\star})$

 θ^{\star} - e scattering angle in $eq (\nu q)$ rest frame

Scalar Leptoquarks

 $\frac{d\sigma}{dy}\Big|_{scalar} \rightarrow flat$ Vector Leptoquarks

 $\left. \frac{d\sigma}{dy} \right|_{vector} \sim (1-y)^2$

NC DIS (Background)

$$\frac{d\sigma^{e^{\pm}p}}{dy} \sim \frac{1}{y^2}$$

Invariant Mass Spectra from HERA I e^+p

Invariant Mass Spectra from HERA II e^-p

NC DIS:

CC DIS:

Good agreement between data and SM \rightarrow no evidence of LQ

At $\lambda = \sqrt{4\pi\alpha} \approx 0.3$ lower limits on M_{LQ} : > 276 - 304 GeV

Vector LQs with F=2 from H1 (HERA II)

At $\lambda = \sqrt{4\pi\alpha} \approx 0.3$ lower limits on M_{LQ} : > 280 - 303 GeV

Limits on F=0 BRW LQ from HERA I

H1

ZEUS

J.Sztuk-Dambietz

Comparison with LEP, TEVATRON and HERA I

TeVatron:

Scalar leptoquarks with F=2 S_0^L

For couplings of em strength ($\lambda \sim 0.3$): mass exclusion $\sim 300 \text{ GeV}$ Limits comparable to those obtained at LEP and Tevatron

Neutral Current *eq* Scattering

Standard Model processes:

Possible "new physics" processes:

For \sqrt{s} much smaller than process scale \wedge \Rightarrow effective parameterization:

Effective Lagrangian for vector *eeqq* contact interactions:

$$\mathcal{L}_{CI} = \sum_{\substack{\alpha, \beta = L, R \\ q}} \eta_{\alpha \beta}^{eq} \cdot (\bar{e}_{\alpha} \gamma^{\mu} e_{\alpha}) (\bar{q}_{\beta} \gamma_{\mu} q_{\beta})$$

Scalar and tensor CI constrained beyond HERA sensitivity.

$$\eta^{eq}_{lphaeta}$$
 - 4 possible couplings for every flavor q

Cross-section formula

For NC e^-p DIS with unpolarized beam

$\begin{aligned} \frac{d^2 \sigma^{e^- p}}{dx dy} &= \\ \frac{sx}{16\pi} \sum_{q} q(x) \left\{ |M_{LL}^{eq}|^2 + |M_{RR}^{eq}|^2 + (1-y)^2 \left[|M_{LR}^{eq}|^2 + |M_{RL}^{eq}|^2 \right] \right\} \\ &+ \bar{q}(x) \left\{ |M_{LR}^{eq}|^2 + |M_{RL}^{eq}|^2 + (1-y)^2 \left[|M_{LL}^{eq}|^2 + |M_{RR}^{eq}|^2 \right] \right\} \end{aligned}$

 \Rightarrow most sensitive to η_{LL}^{eq} and η_{RR}^{eq} (q=u,d)

Cross-section formula

For NC e^-p DIS with polarized beam

$$\begin{aligned} \frac{d^2 \sigma^{e^- p}}{dx dy} &= \\ \frac{sx}{16\pi} \sum_{q} & q(x) \left\{ \mathcal{P}_{-} |M_{LL}^{eq}|^2 + \mathcal{P}_{+} |M_{RR}^{eq}|^2 + (1-y)^2 \left[\mathcal{P}_{-} |M_{LR}^{eq}|^2 + \mathcal{P}_{+} |M_{RL}^{eq}|^2 \right] \right\} \\ &+ & \bar{q}(x) \left\{ \mathcal{P}_{-} |M_{LR}^{eq}|^2 + \mathcal{P}_{+} |M_{RL}^{eq}|^2 + (1-y)^2 \left[\mathcal{P}_{-} |M_{LL}^{eq}|^2 + \mathcal{P}_{+} |M_{RR}^{eq}|^2 \right] \right\} \end{aligned}$$

⇒ most sensitive to η_{LL}^{eq} and η_{RR}^{eq} (q=u,d) where: $\mathcal{P}_{\pm} = (1 \pm P)$

 \boldsymbol{P} is electron beam polarization

Cross-section formula

For NC e^+p DIS with polarized beam $\frac{d^2\sigma^{e^+p}}{dxdy} = \frac{sx}{16\pi}\sum_{q} q(x) \left\{ \mathcal{P}_+ |M_{LR}^{eq}|^2 + \mathcal{P}_- |M_{RL}^{eq}|^2 + (1-y)^2 \left[\mathcal{P}_+ |M_{LL}^{eq}|^2 + \mathcal{P}_- |M_{RR}^{eq}|^2 \right] \right\} + \bar{q}(x) \left\{ \mathcal{P}_+ |M_{LL}^{eq}|^2 + \mathcal{P}_- |M_{RR}^{eq}|^2 + (1-y)^2 \left[\mathcal{P}_+ |M_{LR}^{eq}|^2 + \mathcal{P}_- |M_{RL}^{eq}|^2 \right] \right\}$

 \Rightarrow most sensitive to η_{LR}^{eq} and η_{RL}^{eq} (q=u,d)

 \Rightarrow Combining e^+p and e^-p can significantly improve limits

General Models

Coupling structure

Couplings $\eta_{\alpha\beta}^{eq}$ are related to the "new physics" mass scale \wedge by the formula:

$$\eta = \frac{\varepsilon \cdot g_{CI}^2}{\Lambda^2}$$

where g_{CI} is the coupling strength of new interactions and $\varepsilon = \pm 1$. $g_{CI}^2 = 4\pi$

Different models assume different helicity structure of new interactions \Rightarrow

Also referred to as compositeness models $(\Lambda$ - compositeness scale)

Model	η^{ed}_{LL}	η^{ed}_{LR}	η^{ed}_{RL}	η^{ed}_{RR}	η^{eu}_{LL}	η^{eu}_{LR}	η^{eu}_{RL}	η^{eu}_{RR}
LL	$+\eta$				$+\eta$			
LR		$+\eta$				$+\eta$		
RL			$+\eta$				$+\eta$	
RR				$+\eta$				$+\eta$
VV	$+\eta$							
AA	$+\eta$	$-\eta$	$-\eta$	$+\eta$	$+\eta$	$-\eta$	$-\eta$	$+\eta$
VA	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$	$+\eta$	$-\eta$
X1	$+\eta$	$-\eta$			$+\eta$	$-\eta$		
X2	$+\eta$		$+\eta$		$+\eta$		$+\eta$	
X3	$+\eta$			$+\eta$	$+\eta$			$+\eta$
X4		$+\eta$	$+\eta$			$+\eta$	$+\eta$	
X5		$+\eta$		$+\eta$		$+\eta$		$+\eta$
X6			$+\eta$	$-\eta$			$+\eta$	$-\eta$
U1					$+\eta$	$-\eta$		
U2					$+\eta$		$+\eta$	
U3					$+\eta$			$+\eta$
U4						$+\eta$	$+\eta$	
U5						$+\eta$	· ·	$+\eta$
U6							$+\eta$	$-\eta$

General Models - Results

ZEUS

Significant improvement of limits for models sensitive to LL and RR couplings (constrained mainly by e^-p data)

Limits comparable to those obtained at LEP and Tevatron

Large Extra Dimensions

Arkani-Hamed–Dimopoulos–Dvali Model

If gravity propagates in the 4 + δ dimensions, the effective mass scale M_S can be as low as 1 TeV.

 \Rightarrow Gravitational interactions become comparable in strength to electroweak interactions.

The contribution of graviton (Kaluza-Klein tower) exchange to the $e^{\pm}p$ NC DIS cross section can be described by an effective contact interaction type coupling:

$$\eta_G = \pm \lambda \cdot \frac{\mathcal{E}^2}{M_S^4}$$

where λ is the coupling strength and \mathcal{E} is related to the energy scales of hard interaction. (\sqrt{s} , Q^2)

CI results from H1 (HERA I) \Rightarrow Phys Lett B568 (2003) 35-47

Quark Form Factor

Model

"classical" method to look for possible fermion (sub)structure.

If a quark has finite size \Rightarrow SM cross-section **decreases** at high momentum transfer:

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \cdot \left[1 - \frac{R_q^2}{6}Q^2\right]^2$$

where R_q is the root mean-square radius of the electroweak charge distribution in the quark.

same dependence expected for e^+p and e^-p !

High Mass Leptoquarks

For high mass leptoquarks $M_{LQ} \gg \sqrt{s}$ both *s*- and *u*-channel important \downarrow

Virtual LQ production/exchange

an

in

results

effective coupling:

 $\eta_{CI} \sim (rac{\lambda}{M})^2$

95% CL lower limits on M_{LQ} to the Yukawa coupling ratio from ZEUS:

 M_{LQ}/λ_{LQ} : 0.32 - 1.91 TeV

Limits at HERA complementary/competitive to LEP

Summary and Outlook

- Both experiments published the LQ and CI searches on all HERA I data
- First results based on HERA II data were presented
- No evidence for New Physics:
 - \Rightarrow LQ limits from H1 using HERA II e^-p data: $M_{LQ} > 276-304$ GeV for $\lambda = 0.3$
 - \Rightarrow CI limits from ZEUS using all HERA I+II data:
 - Compositeness scale: $\Lambda > 2-7.5 \text{ TeV}$
 - Heavy LQ: $M_{LQ}/\lambda > 0.32$ -1.9 TeV
 - Quark radius: $\mathbf{R}_q < 0.67 \cdot 10^{-16} \text{ cm}$
 - LED: $M_{S}^{+} > 0.88 \text{ TeV}$
- Limits for LQ with F=2 improved by using HERA II data
- CI analysis including HERA I+II data ⇒ significant improvement of limits
- More data HERA I+II and possible H1 + ZEUS data combination (~ 700 pb⁻¹)
 ⇒ Improvements are expected!

Backup Slide

Models

Leptoquarks Aachen notation

Model	Fermion number F	Charge Q	$BR(LQ ightarrow e^{\pm}q) \ eta$	Coupling		Squark type
S^L_{\circ}	2	-1/3	1/2	$e_L u$	u d	$ ilde{d_R}$
S^R_\circ	2	-1/3	1	$e_R u$		
$ ilde{S}_{\circ}$	2	-4/3	1	$e_R d$		
$S_{1/2}^{L}$	0	-5/3	1	$e_L ar{u}$		
-/-		-2/3	0		$ u \overline{u}$	
$S^{R}_{1/2}$	0	-5/3	1	$e_R ar{u}$		
_/ _		-2/3	1	$e_R \overline{d}$		
$\tilde{S}_{1/2}$	0	-2/3	1	$e_L \overline{d}$		$\overline{ ilde{u}_L}$
,		+1/3	0		$ u \overline{d}$	$\overline{ ilde{d}_L}$
S_1	2	-4/3	1	$e_L d$		
		-1/3	1/2	$e_L u$	νd	
$\mathbf{V}L$	0	$\frac{\tau^{2}}{3}$	1/2	- -		
$\frac{V_{o}}{VR}$	0	$\frac{-2}{3}$	1/2	$e_L a$	νu	
$\frac{V_0^{IU}}{\tilde{I}}$	0	-2/3		$e_R a$		
	0	-5/3	1	$e_R u$		
$V_{1/2}^{L}$	2	-4/3	1	$e_L d$		
		-1/3	0		u d	
$V^{R}_{1/2}$	2	-4/3	1	$e_R d$		
/		-1/3	1	$e_R u$		
$ ilde{V}_{1/2}$	2	-1/3	1	$e_L u$		
·		+2/3	0		u u	
V_1	0	-5/3	1	$e_L \overline{u}$		
		-2/3	1/2	$e_L d$	$ u \overline{u}$	
		+1/3	0		u d	

General LQ limits from ZEUS

General LQ Model \Downarrow No $\beta(eq)$ constraint

Combined limit (NC & CC) assuming $\beta(eq) + \beta(\nu q) = 1$

At $\lambda = 0.3$, M_{LQ} up to 300 GeV excluded, independent of β

Tevatron limits independent of λ , but less sensitive to $\nu q \Rightarrow$ degrade at low β

Cross-section

Contact Interactions modify tree level $eq \rightarrow eq$ scattering amplitudes $M_{\alpha\beta}^{eq}$:

Resulting contribution to the differential NC DIS cross-section:

$$\frac{d\sigma}{dx\,dQ^2}(\eta) = \frac{d\sigma^{SM}}{dx\,dQ^2} \cdot \left[1 + A(x,Q^2)\,\eta + B(x,Q^2)\,\eta^2\right]$$

General formula for all CI type models

General models from H1 (HERAI)

Results

General models from ZEUS (HERA I)

Results

Good agreement with the Standard Model

95% CL limits:

 $\Lambda > 1.7 - 6.2 \text{ TeV}$

J.Sztuk-Dambietz

Large Extra Dimensions from HERA I

H1 results

ZEUS results

J.Sztuk-Dambietz

LQs and CIs at HERA

General Model - comparison with LEP and TeVatron

95 % CL limits on the compositeness scale, Λ (TeV):

	ZEUS	S pub.	ZEUS	HERAI+II	D	0	C	DF	ALE	PH	L	3	OF	PAL
Model	Λ^{-}	\wedge^+	Λ^{-}	\wedge^+	Λ^{-}	Λ^+	Λ^{-}	\wedge^+	Λ^{-}	\wedge^+	Λ^{-}	\wedge^+	Λ^{-}	\wedge^+
LL	1.7	2.7	4.2	4.2	6.2	3.6	5.9	3.7	6.2	5.4	2.8	4.2	3.1	5.5
LR	2.4	3.6	2.0	3.6	4.8	4.5	5.5	4.7	3.3	3.0	3.5	3.3	4.4	3.8
RL	2.7	3.5	2.3	3.6	5.0	4.3	5.8	4.5	4.0	2.4	4.6	2.5	6.4	2.7
RR	1.8	2.7	4.0	3.8	5.8	3.8	5.6	3.9	4.4	3.9	3.8	3.1	4.9	3.5
VV	6.2	5.4	7.5	6.3	9.1	4.9	8.7	7.8	7.1	6.4	5.5	4.2	7.2	4.7
AA	4.7	4.4	5.9	6.3	7.8	5.7	7.8	7.8	7.9	7.2	3.8	6.1	4.2	8.1
VA	3.3	3.2	3.3	3.5										
X1	3.6	2.6	4.3	4.7	6.4	4.8								
X2	3.9	4.0	5.1	4.7										
X3	3.7	3.6	5.9	5.3	7.9	4.1			7.4	6.7	3.7	4.4	4.4	5.4
X4	5.1	4.8	5.4	4.8	6.0	5.0			4.5	2.9	5.2	3.1	7.1	3.4
X5	4.0	4.0	5.1	4.5										
X6	2.5	3.5	4.3	4.1	4.7	6.8								
U1	3.8	3.6	5.2	5.5										
U2	5.0	4.2	6.1	5.2										
U3	5.0	4.1	7.1	6.1							5.2	9.2		
U4	5.8	4.8	6.1	5.0							3.2	2.3		
U5	5.2	4.3	6.2	5.0										
U6	2.8	3.4	4.5	4.7										

High mass leptoquarks from HERA I

ZEUS Results

Results - Comparison to LEP

95% CL lower limits on M_{LQ} to the Yukawa coupling ratio M_{LQ}/λ_{LQ} (TeV):

Model	ZEUS	H1	L3	OPAL
S^L_\circ	0.61	0.71	1.40	0.98
S^R_{\circ}	0.56	0.64	0.30	0.30
$ ilde{S}^R_{\circ}$	0.27	0.33	0.58	0.80
$S_{1/2}^{L}$	0.83	0.85	0.54	0.74
$S_{1/2}^{\vec{R}}$	0.53	0.37		0.86
$ ilde{S}_{1/2}^{L'}$	0.43	0.43	0.42	0.48
S_1^L	0.52	0.49		
V^L_{\circ}	0.55	0.73	1.83	1.27
V^R_\circ	0.47	0.58	0.51	0.54
$ ilde{V}^R_{\circ}$	0.87	0.99	1.02	1.44
$V_{1/2}^{L}$	0.47	0.42	0.71	0.90
$V_{1/2}^{\dot{R}}$	0.99	0.95		0.71
$ ilde{V}^{L}_{1/2}$	1.06	1.02	0.54	0.59
V_1^L	1.23	1.36		

High mass leptoquarks

Results - Comparison to LEP

95% CL lower limits on M_{LQ} to the Yukawa coupling ratio M_{LQ}/λ_{LQ} (TeV):

Model	ZEUS pub	ZEUS HERAI+II	L3	OPAL
S^L_\circ	0.61	0.96	1.40	0.98
S^R_\circ	0.56	0.82	0.30	0.30
$ ilde{S}^R_{\circ}$	0.27	0.32	0.58	0.80
$S_{1/2}^{L}$	0.83	0.88	0.54	0.74
$S_{1/2}^{\vec{R}}$	0.53	0.46		0.86
$ ilde{S}^{L'}_{1/2}$	0.43	0.44	0.42	0.48
S_1^{L}	0.52	0.74		
V_{\circ}^{L}	0.55	0.80	1.83	1.27
V^R_{\circ}	0.47	0.62	0.51	0.54
$ ilde V^R_{ m o}$	0.87	1.33	1.02	1.44
$V_{1/2}^{L}$	0.47	0.46	0.71	0.90
$V_{1/2}^{R}$	0.99	1.00		0.71
$ ilde V^L_{1/2}$	1.06	1.10	0.54	0.59
V_1^{L}	1.23	1.91		