Combined QCD and Electro-Weak Fits at HERA

Yongdok Ri (Tokyo Metropolitan Univ.)

On behalf of the H1 and ZEUS collaborations

XXXIII International Conference on High Energy Physics

July 26 – August 2, 2006, Moscow, Russia

Contents

Deep Inelastic Scattering at HERA

Combined QCD and EW Fits

Results : M_W, quark couplings to Z

HERA is first and unique ep collider in the world! $E_p = 920 \text{GeV}, E_{e^{\pm}} = 27.5 \text{GeV}, \sqrt{s} = 318 \text{GeV}$

Two collider experiments, H1 and ZEUS, will run until 30/Jul/2007

Deep Inelastic Scattering at HERA

Owing to the large center-of-mass energy, the **electromagnetic** and **weak** interactions become of comparable strength at HERA

Therefore both Neutral Current (NC), mediated by γ or Z⁰, and Charged Current (CC), mediated by W[±], can occur

DIS cross sections

 σ_{ep} =Coupling × Propagator × Kinematic Factor × SFs

SFs=coupling to boson × Parton Distribution Functions (PDFs)

DIS is a convoluted phenomenon for EW and QCD

Fit to the measured cross sections to study QCD and EW

 \rightarrow See next slide

Combined QCD and EW Fits

HERA kinematic plane

③ Based on own knowledge of PDFs, EW parameters can be extracted at high-Q²

 — ② Perturbative QCD can
 predict the Q² evolution of
 PDFs, DGLAP equation

(1) x-dependence of PDFs at initial scale, Q²₀ are determined from fits to the measured cross sections at low Q²

Such a unique study, the simultaneous determination on PDFs and EW parameters, is only possible at HERA!

Extraction of PDFs for both experiments
Both experiments fit only to their own data
to handle the systematic errors within single experiment
to eliminate the uncertainty from heavy-target correction
DGLAP evolution equations were performed in MS renormalization scheme

	H1 PDF 2000		ZEUS-JETs	ZEUS
Data-sets	HERA-I F ₂		HERA-I F ₂	
	+ Unpol. highQ ² NC+CC		+ Unpol. highQ ² NC+CC	
			HERA-I DIS inclu.Jet	
			+ PhP di-Jets	
PDFs	$xg, xU, xD, x\overline{U}, x\overline{D}$		$u_v, d_v, Sea, gluon, x\Delta(=x\overline{d}-x\overline{u})$	
parameterization	are parameterised at $Q_0^2 = 4 GeV^2$		are parameterised at $Q_0^2 = 7 \text{GeV}^2$	
Treatment of	evaluated using		evaluated using	
correlated	Hessian method		OFFSET method	
systematic				
uncertainties				

HERA-II

Since Autumn 2003, HERA-II started with two upgrade :

>Large luminosity \rightarrow more sensitivity at high-Q²

 \succ Polarized e beams \rightarrow direct sensitivity on EW

Recently, H1 and ZEUS collaborations measured polarized ep CC/NC DIS cross sections in HERA-II! ← See talks from Alex & Vladimir

Fit including HERA-II data

ZEUS performed the first fit including HERA-II data

"ZEUS-POL" (prel.)

Much statistics at high-Q² with polarized e

≻Better constrain on PDFs at high-x

>Improved sensitivity to EW parameters

Impact on PDFs :

The precisions of the high-x PDFs are improved, particularly for the u-valence PDF, and it can be expected from :

$$\sigma_{NC} \propto 4u + d$$

 $\sigma_{CC} \propto u$

How is on EW parameters?

See next slides.

Extraction of $\mathbf{M}_{\mathbf{W}}$ in space-like region

 G_F is consistent with one obtained from the muon lifetime measurement, and it demonstrates the universality of the CC interaction over a large range of Q^2

Complementary and consistent with Tevatron/LEP time-like one

Polarized NC cross section

$$\frac{d^{2}\sigma^{NC}(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi \alpha^{2}}{xQ^{4}} \left[(Y_{+}F_{2}^{0} \mp Y_{-}xF_{3}^{0}) + P_{e}(Y_{+}F_{2}^{p} \mp xF_{3}^{p}) \right]$$
(F_L is ignored)
(F_L is ignored)
Unpolarized SFs

$$P_{Z} = \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} \frac{1}{\sin^{2} 2\theta_{W}}$$
Polarized SFs

$$P_{Z} = \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} \frac{1}{\sin^{2} 2\theta_{W}}$$

$$F_{2}^{0} = \sum_{i} x(q_{i} + \overline{q_{i}}) \bullet (e_{i}^{2} - 2e_{i}v_{i}v_{e}^{p}P_{z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2})P_{Z}^{2})$$

$$F_{2}^{0} = \sum_{i} x(q_{i} - \overline{q_{i}}) \bullet (-2e_{i}a_{i}a_{e}P_{z} + 4a_{e}v_{e}v_{e}a_{e}P_{Z}^{2})$$

$$F_{2}^{p} = \sum_{i} x(q_{i} + \overline{q_{i}}) \bullet (2e_{i}a_{e}v_{i}P_{z} - 2a_{e}v_{e}(v_{i}^{2} + a_{e}^{2})P_{Z}^{2})$$

$$xF_{3}^{p} = \sum_{i} x(q_{i} - \overline{q_{i}}) \bullet (2e_{i}a_{e}v_{e}P_{z} - 2a_{e}v_{e}(v_{e}^{2} + a_{e}^{2})P_{Z}^{2})$$

In SM,

Axial coupling $: a = T^3$

Vector coupling :
$$v = T^3 - 2e\sin^2\theta_W$$

 $v_e \sim 0.04, P_Z >> P_Z^2$

Extraction of quark couplings to Z only using unpolarized data

In HERA, the light quarks dominate the cross sections, so such measurements are complementary to LEP and CDF results

HERA-II data makes a significant impact on the quark couplings

SM formalism

с Ч

0.5

0

-0.5

-1

$$a_q = T_q^3$$
$$v_q = T_q^3 - 2e_q \sin^2 \theta_W$$

The values of T_u^3 , T_d^3 and $\sin^2 \theta_W$ were freed with PDFs parameters.

Note: $\sin^2 \theta_{\rm W}$ is also present in P_Z, thus providing an extra constraint

total uncert. uncorr. uncert.

SM

68% CL

-1

-0.5

ZEUS

ZEUS-pol-T³₋-T³_d-sin²θ_w-PDF (prel.)

0

	ZEUS-POL- T_u^3 - T_d^3 - $\sin^2 \theta_W$	
T _u ³	$0.47 \pm 0.05 \pm 0.13$	
T _d ³	$-0.55 \pm 0.18 \pm 0.35$	
$\sin^2 \theta_{\rm W}$	$0.231 \pm 0.024 \pm 0.070$	

Consistent with their SM values

0.5

Summary

The simultaneous determination on PDFs and EW parameters can be made at HERA.

HERA-II data, large luminosity with polarized electron beams, reduced high-x PDFs uncertainties, and significantly improved the EW parameters.

Outlook

HERA will run until 30/June/2007 to collect polarized positron data.

Further precise measurements will come soon!

Backup slides

$a_u - v_u$ and $a_d - v_d$

Two of the vector and axial vector couplings for u and d quarks are freed with PDFs parameters.

Clearly, Polarized data improves the vector couplings

\mathbf{a}_{u} - \mathbf{a}_{d} and \mathbf{v}_{u} - \mathbf{v}_{d}

LEP and CDF access information on $a_i^2 + v_i^2$

But, HERA access information on a_u and a_d from xF_3^0 , and on v_u and u_d from $F_2^P \rightarrow$ stronger correlations between a flavor

Improvement is evident

Extension of SM formalism

The extension to include righthanded isospin.

The left-handed couplings $T_{q,L}^{3}$ were fixed to SM values but the right handed couplings were freed.

 $\sin^2 \theta$ was also freed in a further fit

Consistent with their SM values