Charm and beauty in deep inelastic scattering

Daniel Pitzl DESY ICHEP Moscow 29.7.2006

- Boson-gluon fusion.
- Experimental methods:
 - D*
 - muons
 - impact parameter.
- Cross sections.
- F_2^{c}, F_2^{b} .
- Outlook.

Heavy flavour production in ep collisions

Dominant process: Boson-Gluon fusion

- Driven by the gluon density.
- Test of perturbative QCD in next-to-leading order of $\alpha_{\rm S}$.
- Multiple hard scales: M_q , p_t , Q^2 .
- Mass treatment:
 - massive: $Q^2 \sim M^2$
 - massless: $Q^2 \gg 4 M^2$.
 - variable: interpolate.

$$\frac{d^2 \sigma^q}{dx \ dQ^2} = \frac{2 \pi \alpha^2 (1 + (1 - y)^2)}{xQ^4} F_2^q - y^2 F_I^q$$

• $5 < Q^2 < 1000 \text{ GeV}^2$.

 $\pm 15\%$ uncertainty in NLO calculation.

D* production in **DIS**

Extrapolation to full phase space introduces model dependence.

 Cross section well described by NLO pQCD over 5-6 orders of magnitude.

B-tagging with muons in DIS

Inclusive impact parameter tagging

- Silicon vertex detector.
- Signed impact parameter.
- Rank tracks by significance.
- Subtract negative part.
- Extract c and b fractions.
- Small phase space extrapolation.

F₂^c and F₂

F₂^c vs x

- Data precision reaches 7%.
- Good agreement between D^{*} and impact parameter methods.
- Strong rise towards low *x* driven by gluon density in the proton.
- Well described by NLO QCD fit.

F_2^{c} from D^0 , D_s , D^+

- ZEUS (prel.) 98-00 D⁰
- ▲ ZEUS (prel.) 98-00 D_s
- O ZEUS (prel.) 99-00 D⁺
- △ ZEUS 98-00 D
- NLO QCD

- Good agreement with F_2^c from D^{*}.
- High statistics in direct D^0 channel.

$\mathbf{F_2}^{\mathbf{c}} / \mathbf{F_2} \mathbf{vs} \mathbf{x}$

- Charm contribution to F_2 rising towards 30% at low x and medium Q^2 .
- Flavour-democratic limit would be 4/11 = 36%.

D. Pitzl: Charm and beauty in DIS at HERA

First measurements of F₂^b

D. Pitzl: Charm and beauty in DIS at HERA

b cross section vs Q2

Comparison to NLO QCD: FMNR (yp), HVQDIS (DIS):

- NLO QCD tends to be below the data.
- Up to factor 1.8 between different NLO calculations.
- More precise measurements will come.
- NNLO QCD calculations are underway.

Outlook

Luminosity:HERA I: 130 pb^{-1} 2003-06: 310 pb^{-1} expect 06/07: 120 pb^{-1}

Detectors:

Muon impact parameter distribution with the ZEUS silicon vertex detector:

D⁺ lifetime measurement:

Conclusions

- Charm production gives a large contribution to the inclusive DIS cross section.
 - Measured with good precision at HERA in a large part of phase space.
 - NLO QCD calculations describe the data within accuracy.
- Beauty production: first F_2^{b} measurements.

NLO calculations tend to lie below the data.

- Double tagging in DIS $(\mu\mu, D^*\mu)$ will allow access to lower p_t and detailed final state kinematics.
- Exploiting the full statistics of HERA with silicon vertex detectors will give precision results on beauty production.

