DVCS and vector meson production at HERA

Katja Krüger, Universität Heidelberg for the H1 and ZEUS Collaborations

Diffractive vector meson production

 $\rho^{\rm 0}$ production

 J/ψ production

Deeply Virtual Compton Scattering

XXXIII International Conference on High Energy Physics Moscow, July 28, 2006

Diffractive Vector Meson Production at HERA

 $\begin{array}{ll} Q^2 & \gamma^* \mbox{ Virtuality } & \sim 0 < Q^2 < 80 \mbox{ GeV}^2 \\ W & \mbox{ CM Energy of } \gamma^* p \mbox{ system } & 20 < W < 305 \mbox{ GeV} \\ t & (4-\mbox{mom. transfer at } p \mbox{ vertex})^2 & \sim 0 < |t| < 20 \mbox{ GeV}^2 \\ \mbox{ VM Vector Meson } & \rho^0, \ \omega, \ \phi, \ J/\psi, \ \psi', \ \Upsilon \end{array}$

 \Rightarrow probe wide ranges of several scales: Q^2 , t, M_{VM}

DVCS and vector meson production at HERA

Expectations for Diffractive VM Production

Soft Pomeron exchange $\frac{d\sigma}{dt} \propto e^{bt} \left(\frac{W}{W_0}\right)^{4(\alpha_0-1)}$

shrinkage: b = b(W)slow rise $\sigma \propto W_{\gamma p}^{0.22...0.32}$ SCHC

should work for light VMs at $Q^2 \approx 0, \ t \approx 0$

pQCD Approach

exchange of \geq 2 gluons $\sigma \propto [xg(x,Q^2)]^2$

no shrinkage steep rise due to $xg(x,Q^2)$ SCHC maybe violated

should work in presence of a hard scale

Diffractive ρ^0 Photoproduction

Diffractive ρ^0 Photoproduction

H1 PRELIMINARY

fit single linear trajectory: $\alpha_{\mathbb{P}}(t) = 1.093 \pm 0.003^{+0.008}_{-0.007} + (0.116 \pm 0.027^{+0.036}_{-0.046}) \frac{t}{\text{GeV}^2}$

- good agreement with previous ZEUS result, reduced error
- significantly smaller slope than Soft Pomeron (Donnachie-Landshoff)

ho^0 Photoproduction at Large |t|

ho^0 Photoproduction at Large |t|: Spin Density Matrix Elements

study decay angles to extract spin density matrix elements

- r_{1-1}^{04} and $\operatorname{Re}[r_{10}^{04}]$ violate SCHC
- two gluon model fails
- BFKL model cannot describe r_{1-1}^{04} and $\operatorname{Re}[r_{10}^{04}]$

Elastic J/ψ Production

Eur. Phys. J. C46 (2006) 585

photoproduction: $Q^2 < 1 \text{ GeV}^2$ 40 < W < 305 GeV $|t| < 1.2 \text{ GeV}^2$

 $\sigma \propto W^{\delta}$ fits data well $\delta = 0.75 \pm 0.03 \pm 0.03$

MRT* model is very sensitive to the shape of the gluon at low x

* using generalized pdfs (GPDs)

Elastic J/ψ Production

photoproduction:

 $\alpha_{\mathbb{P}}(t) = 1.224 \pm 0.010 \pm 0.012 +$ (0.164 ± 0.028 ± 0.030) GeV⁻² · t

electroproduction $(2 < Q^2 < 80 \,\mathrm{GeV^2})$ is compatible photoproduction: yes

electroproduction: ?

harder than Soft Pomeron (DL)

Elastic J/ψ Prod.: Spin Density Matrix Elements

0 spin density matrix elements extracted from production 0.5 r₁₋₁ and decay angles 0.5 good agreement with ZEUS results r₀₀⁵+2r₁₁⁵ 0.5 0 no evidence for SCHC violation $r_{00}^1 + 2r_{11}^1$ 0.5

 J/ψ Photoproduction at Large |t|

 $50 < W < 150 \,{
m GeV}, \,\, M_Y < 30 \,{
m GeV}, \,\, 1 < |t| < 20 \,{
m GeV}^2, \,\, z < 0.95$

ZEUS data above H1 at low |t|, agreement at high |t|

 J/ψ Photoproduction at Large |t|

DGLAP and BFKL with fixed α_s describe |t| dependence

BFKL reproduces rise with W, DGLAP does not

Deeply Virtual Compton Scattering

DVCS and Bethe-Heitler have same final state

- \Rightarrow interference term vanishes due to integration over azimuth
- \Rightarrow use Bethe-Heitler to control detector response

DVCS predictions

QCD predictions:

- new formalism to describe proton dynamics: $GPDs = f(x, \xi, t; \mu^2)$
- access to transverse momentum of partons, correlations

Color Dipole Model:

- \bullet photon fluctuates into a $q\bar{q}$ pair
- color dipole interacts with proton
- GBW saturation model with DGLAP evolution (BGBK) applied

DVCS results

DVCS comparison to predictions

Conclusions

Diffractive Vector Meson Production:

- ρ^0 photoproduction at small |t| not described by Soft Pomeron, $\alpha' = 0.116 \pm 0.027^{+0.036}_{-0.046}$ GeV⁻²
- J/ψ production calculable in pQCD, sensitive to gluon density and evolution
- SCHC violated in ρ^0 production, no evidence for SCHC violation in J/ψ production

Deeply Virtual Compton Scattering:

- QCD and Color Dipole Model can describe the data
- QCD is sensitive to gluon density (generalized parton density)

more analyses with HERA-2 data to come!