

Multijet Final States at HERA

Results from ZEUS

Tim Gosau Hamburg University for the ZEUS Collaboration

- Multijets at low-x in DIS
- Multijets in Photoproduction
- Three-Jet Angular Correlations in DIS

Multijets

- Multijet events access parton dynamics at high order pQCD.
- Variables in Multijet systems test different fundamental QCD properties.

Analyses presented:

- Multijets at low-x in DIS
 ➢DGLAP parton evolution at low-x_{Bi}
- Multijets in Photoproduction
 - ≻3-,4-Jets in PhP
 - First analysis of four-jet events in photoproduction at HERA
 - ➤Test/tune MPI-models
- Three-Jet Angular Correlations in DIS
 Test underlying gauge symmetry

• E_T > 7/5/5 GeV

-1.0 < η_{jet,lab} < 2.5

2(3) jets in HCM frame

Jet selection:

ZEUS

27.07.2006, T. Gosau, U. Hamburg

Multijets at low-x in DIS

e

• DGLAP evolution sums over ln(Q²) terms.

 > predicts strong ordering of cascading partons in k_T and x
 > well tested at medium to high Q².

- Examine QCD evolution at \geqslant low-x_{Bj} (10⁻⁴ < x_{Bj} < 10⁻²) \geqslant low-Q² (10 GeV² < Q² < 100 GeV²).
- Study angular correlations between two highest-E_T jets in hadronic-center-of-mass frame

NLO Calculation:

- NLOjet
- $O(\alpha_s^2)$ for Dijets
- $O(\alpha_s^3)$ for Trijets
- O(α_s³) for Dijets in a restricted phase space

Di-,Trijet cross sections vs. Jet- E_T^{HCM}

NLOjet describes data well, except at highest E_{T,jet2(3)}

NLOjet O(α_s^3) gives slight improvement for dijets.

NLOjet at $O(\alpha_s^3)$ describes data

NLOjet at $O(\alpha_s^3)$ describes data

27.07.2006, T. Gosau, U. Hamburg

ICHEP 2006, Moscow

ZEUS Multijets - 7

27.07.2006, T. Gosau, U. Hamburg

ICHEP 2006, Moscow

ZEUS Multijets - 8

Multijets in Photoproduction 3-,4-Jet production

First Measurement of 4-Jet Events in PHP at HERA examines higher order QCD

lowest order to 4-Jet process

access higher orders

MPI contribution to 4-Jet events

 test of MPI in "clean" hadronic induced reaction

- For M_{3j(4j)} > 50(70) GeV MCs describe data without MPI
 MC without MPI normalized to data for M_{nj} > 70 GeV
- HERWIG with tuned MPI describes data well
- PYTHIA with MPI overestimates cross section

Multijets in PHP MC and MPI

- MCs without MPI describe y, but fail to describe x_v^{obs} distribution
- PYTHIA: MPI tuned to generic collider data, HERWIG: MPI tuned to describe xvobs
- HERWIG+MPI describes x_v^{obs} , y not described anymore
- PYTHIA+MPI does not describe data
- x_y^{obs} and y distribution: ideal ground for tuning and testing MPI models 27.07.2006, T. Gosau, U. Hamburg ICHEP 2006, Moscow ZEUS I

ZEUS Multijets - 11

Multijets in PHP

 $cos(\psi_3)$ reflects orientation of lowest energy jet • directly sensitive to $O(\alpha_s^2)$

 $O(\alpha \alpha_s^2)$ pQCD (corrected for hadronization and MPIs) describes high mass region.

27.07.2006, T. Gosau, U. Hamburg

ZEUS

ICHEP 2006, Moscow

ZEUS Multijets - 13

At $O(\alpha \alpha_s^2)$ calculations of three-jet cross sections the color factors control the rates of these processes:

Angular Correlations of 3-Jets in DIS

Angular Correlations Definition of Variables

 $\bullet \Theta_{H}$: angle between the plane determined by jet 3 the highest- E_{T} jet and the beam, and the plane of the two lowest- E_{τ} jets beam line • α_{23} : angle between the lowest-E_T jets $\boldsymbol{\theta}_{\mathbf{H}}$ •COS(β_{KSM}): $\cos \left| \frac{1}{2} \left(\angle [(\vec{p}_1 \times \vec{p}_3), (\vec{p}_2 \times \vec{p}_B)] + \angle [(\vec{p}_1 \times \vec{p}_B), (\vec{p}_2 \times \vec{p}_3)] \right) \right|$ iet 2 • η^{jet}_{max} : η of the most forward jet of the ZEUS B) $(1/\sigma) d\sigma/d\cos(\alpha_{23})$ three-jet system in the Breit frame ZEUS (prel.) 98-00 1.5 Shapes of different $C_F C_A$ processes contributing to $\cos(\alpha_{23})$ cross section Data: 81.7pb⁻¹ 0.5 $Q^2 > 125 \text{ GeV}^2$, $|\cos(\gamma_h)| < 0.65$ 3 Jets in Breit frame with $E_{T} > 8/5/5 \text{ GeV}, -2 < \eta < 1.5$ -0.5 0.5 -1 $\cos(\alpha_{23})$ 27.07.2006, T. Gosau, U. Hamburg ICHEP 2006, Moscow ZEUS Multijets - 14

Angular Correlations Comparison to theory

- •Data reasonably described by SU(3)
- •Differences to $U(1)^3$ are of the order of the statistical error
- •Prediction with $C_F = 0$ doesn't describe shape of data
- •SU(N) in large-N limit ($\rightarrow T_F/C_F \approx 0$) fails to describe η^{jet}_{max} distribution

Summary – ZEUS Multijets

•Multijets at low-x in DIS

- NLOjet (DGLAP based pQCD) at $O(\alpha_s{}^2)$ does not describe dijet cross section with low azimuthal separation
- Including another order of $\boldsymbol{\alpha}_s$ improves NLOjet agreement for dijets
- High-ΔE_{T,jets} tail of the data is not described for di-, trijets
 - improvement shown with higher order for dijets
- •Multijets in Photoproduction
 - First measurement of 4-jets in photoproduction
 - HERWIG+MPIs describes data well
 - $O(\alpha \alpha_s^2)$ pQCD describes three-jets for $M_{3j} > 50$ GeV
- •Three-Jet Angular Correlations in DIS
 - Sensitivity to different color components allows access to underlying gauge group
 - SU(3) gives a reasonable description of data
 - Calculations with $T_F/C_F \approx 0$ or $C_F = 0$ disfavored

Dijet and Trijet cross sections described by NLOjet within uncertainties.

Jet-n well described within uncertainties

NLOjet consistent within large uncertainties

Dijet and Trijet cross sections described by NLOjet within uncertainties.

NLOjet agreement for dijets using a higher order calculation, description for trijets inside the large uncertainties

Multijets in PHP comparison to pQCD

 $O(\alpha \alpha_s^2)$ pQCD (Klasen, Kleinwort, Kramer) with MPI correction from HERWIG compared to the data.

There is no calculation to compare to four-jets in PHP yet.

The calculation mostly describes data at high $M_{3j} > 50$ GeV. For lower M_{3j} the data get described worse. Reasons: missing orders or MPI?

