Particle production and fragmentation

results from ZEUS

Anna Galas^a

on behalf of ZEUS Collaboration

- ★ Introduction
- $\bigstar K_s^0, \Lambda$ and $\overline{\Lambda}$ particle production
- \bigstar Bose-Einstein correlations between $K^0_s K^0_s$ and $K^\pm K^\pm$
- ★ Summary

^aThe Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland

DIS kinematic varia	bles
o'(k')	DIS kinematic variables for $ep \rightarrow eX$
	P/k the initial-state four momenta of
$\underbrace{e(k)}{} \qquad $	the proton and electron/positron
	$s = (P + k)^2$ the cms energy squared
x_{Bj} $y_{M2} = W^2 =$	of the ep system
$(q+P)^2$	$W=(P+q)^2$ the cms energy of the γ^*
$p(P) \xrightarrow{p remnant}$	virtual-photon-proton system
$ep \rightarrow eX$ collisions at HERA give in-	The photon virtuality Q^2 and Bjorken va-
formations about soft and hard pro-	riables are defined as:
cesses.	$Q^2 = -q^2 = -(k - k')^2$
@ HERA:	$x_{B_J} = rac{Q^2}{2P \cdot q}$
$e^{\pm} (27.6 \; GeV) + p \; (820/920 \; GeV)$	$y_{B_J} = rac{P \cdot q}{P \cdot k}$
$\sqrt{s} = 300 - 318 \; GeV$	
$96 - 00 \ e^{\pm}p$ ZEUS data $\Rightarrow L = 121 \ pb^{-1}$	

– p.2/12

Differential K_s^0 **cross-sections**

scribe the data less satisfactory

★ ARIADNE ($\lambda_s = 0.22$) and LEPTO do not describe the data well

\bigstar The same number of Λ and $\overline{\Lambda}$ produced

 N_{ch} - number of $\pi^{\pm}, K^{\pm}, p, \bar{p}$ together

 \bigstar Strangeness production is flat in x_{γ}^{OBS}

$1 K_s^0 K_s^0$	★ $96 - 00 \ e^{\pm}p$ ZEUS data $\Rightarrow L = 121 \ pb^{-1}$	\bigstar DIS events sample: $2 < Q^2 < 15000~GeV^2$	★ BE clearly effect visible	\bigstar r value for $K^0_s K^0_s$ is similar to $\pi^\pm \pi^\pm$	$\lambda = 0.475 \pm 0.007(stat)^{+0.011}_{-0.003}(sys)$ $\chi^{\pm}\pi^{\pm}$ (ZEUS)	$r = 0.666 \pm 0.009(stat)^{+0.022}_{-0.036}(sys)fm \int$ Phys. Lett. B583 (2004) 231	★ good agreement with LEP for radius	★ higher \u03b3 value than for ALEPH, DELPHI	\bigstar the $f_0(980)$ resonance is expected in the same low Q_{12} region where BEC are measured	\bigstar small contribution of $f_0(980)$ in data can significantly change λ value	\bigstar the estimation of $f_0(980)$ in data is $\sim 10\%$	\bigstar the ALEPH, DELPHI removed f_0 resonance	
BEC between	ZEUS	22 23 23 24 20 23 24 20 24 20 24 24 24 24 24 24 24 24 24 24 24 24 24	$2 < Q^{2} < 15000 \text{ GeV}^{2}$	1.8 Fit (Goldhaber parametrisation) $\lambda = 1.16 \pm 0.29$ (stat.) $\lambda = 1.16 \pm 0.29$ (stat.) $\lambda^{0.07}$ (syst.) fm r = 0.61 ± 0.08 (stat.) $\lambda^{0.07}$ (syst.) fm				0.2 0.4 0.6 0.8 1 1.2 1.4 0.6 0.8 0.8 0.9 0.1 1.2 0.4 0.6 0.8 0.8 0.4 0.6 0.8 0.8 0.4 0.4 0.6 0.8 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	1.6 * OPAL			0.3 0.4 0.5 0.6 0.7 0.8 0.9 r (fm)

- p.10/12

veen $K^\pm K^\pm$	$4 \rightarrow 0$ $e^{\pm}p$ ZEUS data $\Rightarrow L = 121 \ pb^{-1}$	\Rightarrow DIS events sample: $2 < Q^2 < 15000~GeV^2$	→ BE effect visible	parametrisation) = \star r value for $K^{\pm}K^{\pm}$ is similar to $\pi^{\pm}\pi^{\pm}$ and $K^0_s K^0_s$	$\lambda = 0.475 \pm 0.007(stat)^{+0.011}_{-0.003}(sys)$ $\chi^{\pm}\pi^{\pm}\pi^{\pm}$ (ZEUS)	$r = 0.000 \pm 0.000 \pm 0.008(sys) m$ J $hy r r r r r r$	$\lambda = 1.16 \pm 0.29(stat)^{+0.28}_{-0.08}(sys) \qquad \qquad$	$\int_{a_{12}}^{a_{12}} (\mathbf{k}^{\pm} \mathbf{k}^{\pm}) \frac{1}{2} = 0.61 \pm 0.08(stat)^{+0.07}_{-0.08}(sys) \int \frac{1}{2} \sum_{s=12}^{s=12} \sqrt{-10.05} \frac{1}{2} \left(\frac{1}{2} \sum_{s=12}^{s=12} \sqrt{-10.05} \right) \frac{1}{2} \left(\frac{1}{2} \sum_{s=12}^{s=12} \sqrt{-10.05} \right)$	★ good agreement with LEP for radius	$\stackrel{\text{e.e.}}{\star}$ DELPHI $\stackrel{\text{e.e.}}{\star}$ smaller λ value than for e^+e^-	\star different fragmentation processes in $e^{\pm}p$ and e^+e^-	 proton influence is expected - ZEUS data populate mostly proton fragmentation region 	$\star K^+K^-$ production from $\phi_0(1020)$ resonance decay - strong sig-	nal of $\phi_0(1020)$ in ZEUS data	
BEC betv	2EUS	$\mathbf{K}^{\pm}\mathbf{K}^{\pm}$	$2 = 2 < \alpha^2 < 15000 \text{ GeV}$	1.8 Fit (Goldhaber - λ = 0.31 ± 0.06 (str 1.6 - 1.6 -	<u><u></u></u>			0 02 0.4 0.6 0. 0	$\mathbf{K}^{\pm}\mathbf{K}^{\pm}$	UIS (2 < 0 ⁻ < 15000 GeV ⁻) 1.2	++	0.8	0.6 - +	0.4 -	

– p.11/12

Summary
\bigstar The measurements of $K^0_s, \Lambda, ar{\Lambda}$ production have been made at ZEUS
$ ightarrow$ In high and low Q^2 DIS, ARIADNE generally describes the cross-sections
\bigstar PYTHIA describes cross-sections in PHP well, except the x_{γ}^{OBS} dependence
★ ARIADNE follows the shape of the ratio of baryons to mesons
\bigstar The baryon to meson ratio increases up to 0.7 at low $x_{\gamma}^{OBS},$ not predicted by PYTHIA
$ ightarrow$ With good approximation, there is the same number of Λ and $ar{\Lambda}$ produced
\bigstar For strange to light meson ratio, ARIADNE requires $\lambda_s=0.22$ rather than $\lambda_s=0.3$
\bigstar The BEC of $K^0_s K^0_s$ and $K^\pm K^\pm$ were measured and compared to LEP results
\bigstar The radius value for $K^0_s K^0_s$ is consistent with $K^\pm K^\pm$ and with $\pi^\pm \pi^\pm$
★ The radius value is compatible with LEP results
\bigstar λ value for $K^0_s K^0_s$ is high due to the $f_0(980)$ influence in low Q_{12} region
\bigstar Smaller λ for $K^{\pm}K^{\pm}$ in comparison with LEP due to proton influence

– p.12/12