Review of Power Corrections in DIS

FRIF Power Corrections Workshop 06, Paris

Thomas Kluge, DESY

some history

- peculiarities of event shapes in DIS
- mean values of 2-jet shapes
- distributions of 2-jet shapes
- distributions of 3-jet shapes

History of Power Corrections in DIS

- 95: DIS Paris Brian Webber presents <F>+PC for DIS
- 96: DIS Rome First H1 data <F>(Q), waiting for pQCD calculation MEPJET,DISENT,DISASTER++
- **97**: H1 publishes $\langle \tau \rangle, \langle \tau_c \rangle, \langle B \rangle, \langle \rho \rangle$ universal α_0 prediction for B not confirmed PLB406(1997)256
- jet broadening revisited by theory, 2-loop corrections, Milan factor: Dokshitzer, Webber, Dasgupta, Salam,...
- > 99: H1 publishes mean values- still large spread of $\alpha_s(m_z)$, massless observables, first tries with spectra EPJC14(2000)255
- 01: HEP Budapest Mrinal Dasgupta: resummed spectra for DIS
- 02: ZEUS results on mean values EPJC27(2003),531
- > 03: EPS Aachen prel. H1 spectra, first 3-jet data (K_{out} , χ)
- 04: HEP Beijing prel. ZEUS spectra, 3-jet data
- 12/2005: H1 results on mean values and distributions, hep/ex 0512014

Eventshapes in DIS at HERA

t-channel scattering

 $ightarrow \sqrt{s} <=> \sqrt{Q^2}$ Q²=sxy variable, here: Q=5..115 GeV

initial state: not vacuum, factorise into pdfs

- outgoing parton ±resembles 1/2 of e⁺e⁻ event
- separate low momentum proton remnant -> Breit frame

The Breit Frame

12.01.2006

- brick wall frame
- **b** define hemispheres (CH: $\eta < 0$)
 - event shapes defined on particles in current hemisphere
 - emmisions in remnant hemisphere
 - some event shapes sensitive through recoil (Global observables)
 - RH partons may leak into CH
- avoid IR sensitivity due to near empty CH by E_{min} requirement, e.g. E_{CH}>0.1·Q
- jet rates: defined for both hemispheres

Observables studied

$$T_C = \max_{\vec{n}_T} \frac{\sum |\vec{p}_h \cdot \vec{n}_T|}{\sum |\vec{p}_h|}$$

$$\rho = \frac{(\sum E_h)^2 - (\sum \vec{p_h})^2}{(2\sum |\vec{p_h}|)^2}$$

$$C = \frac{3}{2} \frac{\sum_{h,i} |\vec{p}_h| |\vec{p}_i| \sin^2 \theta_{hi}}{(\sum |\vec{p}_h|)^2}$$

- defined wrt "own" axis
- non-global observables
 - insensitive to pdf

$$T = \frac{\sum |\vec{p}_{z,h}|}{\sum |\vec{p}_h|}$$

- defined wrt virtual boson axis
- global observables
- more sensitive to pdf (and evolution)

Mass effects

jet mass defined using E and p dependent on particle masses avoid by using massless scheme substitute E by |p|, ρ -> ρ₀ mass effects are substantial

- residual effect on all variables
- in the following use ρ₀, but interesting topic in itself

Overview of Studies

- 2-jet event shapes, NLO+PC
- jet rates, NLO(+PC)

- 2-jet event shapes, NLO+NLL+PC
- 3-jet event shapes, LO+NLL+PC
- jet rates, NLO

Mean Values

QCD Fits to Mean Values

 γ -axis thrust

- large uncertainties
- ZEUS: negative correction
- other: sensible values of α₀, universality at 10% level, H1 ~10% higher than ZEUS
- **b** spread in α_s larger than exp. errors.
 - higher order pQCD needed?
- results consistent with 95-97 analyses
- 🕨 exp. errors small
 - dominating systematic: elm. Escale due to boost to the Breit system

x dependence

- γ-axis variables: dependence on Bjorken x due to pdf, largest for thrust
- H1 integrate over Q bin
- ZEUS: split high/low x

Mean Values Jet Rates

jet rates: mean value of resolution y for 2+1->1+1 jets transition

factorisable JADE y_{fl}

- p=1, a_f=1 (PC parameters)
- compatible with pQCD alone

Durham kt y_{kt}

– p=2, a_f=? (PC parameters)

- fit: $a_f = -50$

> no reasonable fits for ($lpha_{s}, lpha_{0}$)

open question...

Distributions

12.01.2006

Resummed Distributions

Distributions

Fits to Distributions

0.13

Comparison of H1/ZEUS Results

AGREE

- $\mathbf{b} \, \boldsymbol{\alpha}_{s}$ compatible with world mean
- $ightarrow \alpha_{s}$ shape-by-shape
- > neg. correlation between (α_s, α_0)
- **C** prefers lowest (α_s, α_0) values
- $ightarrow \chi^2$ /dof best for γ -axis variables

DISAGREE

ZEUS:

- C-par: α_0 low
- overall α_0 lower, except T_{γ}
- χ^2 /dof large for T_t, ρ_0 ,C

DIFFERENCES

- correlations: H1 uses Bayes unfolding, syst. correlations
- matching scheme: H1: mod logR, ZEUS: mod M²
- bins used for fitting different

Fit Ranges

H1 Distributions

now: assume PC valid

- Fit $\alpha_s(Q)$ with shape specific α_0
- observe running for all shapes
- combine, estimate correlations between variables

result:

 $\alpha_s(m_Z) = 0.1178 \pm 0.0015 \text{ (exp)} ^{+0.0081}_{-0.0061} \text{ (theo)}$

- determination of α_s(Q) over large range of scale!
- sizable renormalisation scale uncertainty

Means vs Distributions

b Universality of α_0 : already good...

... improvements possible?

Jet rates Distributions

- distributions of jet rates
- H1 preliminary data
- power correction not known
- high Q -> hadronisation small
- fit of NLO with had. corr. from JETSET failed
- resummation needed?
- application for automated resummation (CAESAR)?

3-jet Distributions

K_{out}: momentum out of event plane

- sensitive to large angle emissions, in between hard jets
- extend from current
 hemisphere (η<0) to η<3
- not so inclusive as 2-jet variables: require 0.1<y₂<2.5</p>
- rather well description by LO+NLL+PC at higher Q, but some shift
- also prel. H1 data available Q: 15...81 GeV

3-jet Distributions

> azimuthal correlation in the event plane: χ

same requirements for η and y₂ as for K_{out}

 \blacktriangleright for χ and $K_{_{out}}$ need pQCD at $\alpha_{_{s}}{}^{_{3}}$

NLOJET++ with matched resummation?

Summary and Conclusion

STATUS

mean values of 2-jet event shapes

- consistent between H1 and ZEUS
- universality of α_0 , spread in α_s

distributions of 2-jet event shapes

- recent H1 analysis: consistent $\alpha_{_{0}}$ and $\alpha_{_{s}}$
- ZEUS preliminary: larger spread in α_0

distributions of 3-jet event shapes

- preliminary data for ${\sf K}_{\sf out}$ and χ available
- up to now comparison to LO+NLL+PC

(personal) WISHLIST

- confirmation for distributions by ZEUS
- resummed calculation matched with pQCD at α_s³ for 3-jet distributions
- power corrections for k_t jet rate

Backup

# of Q bin	1	2	3	4	5	6	7
Q Interval/GeV	[14,16]	[16,20]	[20,30]	[30,50]	[50,70]	[70,100]	[100,200]
$\langle Q \rangle / \text{GeV}$	14.9	17.7	23.8	36.9	57.6	80.6	115.6
$\langle x \rangle$	0.00841	0.0118	0.0209	0.0491	0.116	0.199	0.323

strong coupling constant $\alpha_s(m_Z)$				non perturbative coupling $lpha_0(\mu_I=2{ m GeV})$							
event shape variable	$ au_c$	τ	В	$ ho_0$	C	event shape variable	$ au_c$	τ	В	$ ho_0$	C
central value	0.1171	0.1202	0.1196	0.1174	0.1156	central value	0.488	0.513	0.519	0.486	0.481
uncertainties:						uncertainties:					
total	$+0.0068 \\ -0.0062$	$+0.0072 \\ -0.0058$	$+0.0072 \\ -0.0064$	$+0.0070 \\ -0.0056$	$+0.0073 \\ -0.0054$	total	$^{+0.037}_{-0.035}$	$+0.034 \\ -0.039$	$+0.059 \\ -0.049$	$+0.023 \\ -0.035$	$+0.028 \\ -0.042$
total experimental	± 0.0035	± 0.0021	± 0.0014	± 0.0021	± 0.0021	total experimental	± 0.021	± 0.025	± 0.039	± 0.014	±0.008
statistical experimental	± 0.0014	± 0.0006	± 0.0004	± 0.0010	± 0.0009	statistical experimental	± 0.009	±0.009	± 0.006	± 0.006	± 0.005
systematic experimental	± 0.0033	± 0.0020	± 0.0013	± 0.0019	± 0.0019	systematic experimental	± 0.019	±0.023	± 0.038	± 0.013	±0.007
total theoretical	$+0.0058 \\ -0.0051$	$+0.0068 \\ -0.0054$	+0.0071 -0.0063	$+0.0067 \\ -0.0052$	$+0.0069 \\ -0.0049$	total theoretical	$+0.030 \\ -0.027$	$+0.022 \\ -0.029$	$+0.044 \\ -0.029$	$+0.019 \\ -0.032$	+0.026 -0.041
μ_r dependence	+0.0054 -0.0048	+0.0058 -0.0043	+0.0056 -0.0044	+0.0064 -0.0050	+0.0069 -0.0048	μ_r dependence	+0.020 -0.026	+0.018 -0.027	+0.030 -0.028	+0.017 -0.027	+0.022 -0.038
μ_I dependence	$+0.0002 \\ -0.0002$	$< 10^{-4}$	$< 10^{-4}$	$+0.0002 \\ -0.0002$	$< 10^{-4}$	fit interval	+0.020 +0.022	+0.008	+0.020 +0.030	-0.003	+0.006
fit interval	$+0.0015 \\ -0.0018$	$+0.0007 \\ -0.0022$	$+0.0001 \\ -0.0009$	+0.0010 +0.0007	$+0.0003 \\ -0.0004$	parton density functions	+0.007 +0.001	+0.005 +0.006	+0.006 +0.011	+0.016 +0.001	+0.003 +0.001
parton density functions	$+0.0002 \\ -0.0001$	$+0.0003 \\ -0.0010$	$+0.0006 \\ -0.0007$	$+0.0001 \\ -0.0002$	$+0.0002 \\ -0.0001$	matching schome	-0.001 -0.005	+0.004 -0.009	+0.003 +0.006	-0.001 -0.006	-0.002 -0.014
matching scheme	+0.0015 +0.0005	+0.0036 +0.0022	+0.0043 +0.0043	+0.0018 +0.0009	-0.0005 -0.0009	inatching scheme	-0.012	-0.023	-0.010	-0.009	-0.014

correlation coefficient α_s, α_0	-0.85	-0.76	-0.75	-0.78	-0.51
χ^2 / d.o.f. (experimental errors)	1.13	0.51	0.81	1.40	1.20

FRIF Power Corrections Workshop 06, Paris