Vector Mesons at ZEUS

Dorota Szuba DESY, Hamburg

on behalf of the

Collaboration

International Workshop on Diffraction in High-Energy Physics DIFFRACTION 2006, September 5-10 2006, Milos, Greece

Outline

• Exclusive di-pion production (preliminary status)

• Proton-dissociative J/ψ photoproduction at high |t| (DIS05)

Diffractive vector meson production in γ^*p

proton dissociative e(k) Q^2 e(k') $\chi/\gamma^*(q)$

W

p(P)

VM

Y(P')

experimentally: very clean process in wide kinematic range

 \rightarrow VM at HERA: transition between soft and hard regime

 \longrightarrow simultaneous control of different scales: Q^2 , |t|, M_{VM}^2

Diffractive vector meson production in pQCD

VM = $q\bar{q}$ dipol, exchange of ≥ 2 gluons (color singlet – QCD Pomeron) large Q^2, M_{VM}^2 or $|t| \Rightarrow$ small $q\bar{q}$ and interaction size hard interaction \Rightarrow perturbative QCD applicable, factorization holds

'Exclusive' VM electroproduction:

- steep rise of $\sigma(W)$, $\sigma \sim \frac{\alpha_s(Q^2)}{Q^6} [xg(x,Q^2)]^2$, $x \approx Q^2/W^2$
- universal t dependence: $\sim \exp^{-b_{2g}|t|}$, $b_{2g} \sim 4 5 \,\text{GeV}^{-2}$ and $\alpha'_{\text{IP}} \approx 0$
- possible SCHC violation

'Proton dissociative' VM photoproduction;

- $d\sigma/d|t| \sim |t|^{-n}$
- 2-gluon exchange no energy dependence
 gluon ladder exchange energy dependence: weak (DGLAP)
 - strong (BFKL)

Clean experimental signature

- \bullet scattered e reconstructed in CAL (DIS) or undetected (γp)
- scattered p undetected (elastic)
 or dissociated and deposited
 in forward part of CAL (p. diss.)

• two tracks reconstructed in CTD associated to identified in CAL kaons (ϕ), pions ρ , electrons or muons (J/ψ)

W dependence as a function of Q^2

 δ as a function of $Q^2 + M_{VM}^2$

- fit to $\delta \sim W^{\delta}$
- "universal" dependence of δ on $Q^2 + M_{VM}^2 \rightarrow$ transition scale
- ρ, ϕ in between from soft to hard regime
- J/ψ hard already in photoproduction

b dependence as a function of $Q^2 + M_{VM}^2$

• $b \sim r_{\perp q \bar{q}}^2 + r_{proton}^2$ is the size of interaction

• fit:
$$\frac{d\sigma}{dt} \propto \exp^{-m{b}|t|}$$

- $b_{\rho,\phi}$ decreases with $Q^2 \Rightarrow$ transverse size of $q\bar{q}$ decreases with Q^2
- $b_{\rho,\phi,\pi\pi}(Q^2\gg 0)\longrightarrow b_{J/\psi}(Q^2\approx 0)$
- $b \sim 4.5 \, \mathrm{GeV}^{-2}$
- b size similar to proton size \rightarrow at hard scale the VM production is point-like

Q^2 dependence

 $n = 2.087 \pm 0.055_{stat} \pm 0.050_{syst} \text{ for } 2.4 \le Q^2 \le 9.2 \text{ GeV}^2$ $n = 2.75 \pm 0.13_{stat} \pm 0.07_{syst} \text{ for } 9.2 \le Q^2 \le 70 \text{ GeV}^2$

• similar results as for ρ ($n = 2.44 \pm 0.09$ for $Q^2 > 10 \text{ GeV}^2$) and J/ψ ($n = 2.44 \pm 0.08$)

Pomeron trajectory

• fit to $\sigma \propto W^{\delta}$ at fixed Q^2

• δ related to pomeron trajectory: $\delta = 4(\alpha_{IP}(t) - 1)$ and $\alpha_{IP}(t) = \alpha_{\circ} + \alpha' \cdot t$

 ϕ : $\alpha_{IP}(0) = 1.10 \pm 0.2(stat.) \pm 0.2(syst.)$ $\alpha'_{IP} = 0.08 \pm 0.09(stat.) \pm 0.08(syst.) \,\text{GeV}^{-2}$

ϕ – helicity analysis

<u></u>8

0.8

0.6

0.4

0.2

0

¦+ + ⁺ ≠

ZEUS

scaling with Q^2/M_{VM}^2 observed ${\bf Q^2/M_v^2}$

▲ ZEUS ρ 94+95 □ ZEUS J/w 96-00

30

20

 $ho, \phi, J/\psi$

- $\sigma = \sigma_T + \epsilon \sigma_L$
- ullet angular distributions allow to extract σ_L/σ_T

•
$$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$
, $\epsilon \approx 0.99$

ZEUS ZEUS **R**=σ_L/σ_T _סר / ס_ד $-R = a (Q^2/M_{\phi}^2)^{b}(a)^{c}$ 10 • ZEUS 98-00 **ZEUS 98-00** (b) • $Q^2 = 3 \text{ GeV}^2$ ····· MRT (ZEUS-S) ZEUS 94 • rise of R with Q^2 10 $\blacksquare Q^2 = 8 GeV^2$ Ш OH1 95-96 FS04 Ľ • fit to $R = a(Q^2/M_{\phi}^2)^b$ $a = 0.51 \pm 0.07_{stat} \pm 0.05_{sust}$ $b = 0.86 \pm 0.11_{stat} \pm 0.05_{sust}$ • weak W dependence of R1 ····· MRT (ZEUS-S) **FS04** 15 20 10 5 100 120 140 40 60 80 Q^2 (GeV²) W (GeV)

ϕ production vs pQCD - transition region

- pQCD models different assumptions on gluon densities
- MRT (Martin, Ryskin, Teubner) ZEUS-S, MRST99, CTEQ6M pdfs Phys. Rev. D62(2000)14022
- FS04 (Forshaw,Shaw) JHEP 0412(2004)052
- \bullet qualitative description OK \ldots

 J/ψ photoproduction at high |t|

• |t| – dependence of the cross section

J/ψ at high |t| - W dependence

- fit form: $\sigma \propto (W/90 \text{ GeV})^{\delta}$
- δ rising with |t|
- effective pomeron trajectory

 $\delta = 4\alpha_{IP}(t) - 4$ $\alpha_{IP} = \alpha(0) + \alpha'(t)$

- $\alpha(0) = 1.153 \pm 0.048_{stat} \pm 0.039_{syst}$
- $\alpha' = -0.020 \pm 0.014_{stat} \pm 0.010 \, \text{GeV}_{syst}^{-2}$
- \bullet consistent with: H1 p-diss. J/ψ and ZEUS exclusive J/ψ

J/ψ production – QCD Pomeron

$$\begin{split} \gamma p &\to J/\psi \ p \ (\text{Eur. Phys. J. C24(2002)345}) & \alpha_{IP}(t) = (1.200 \pm 0.009) + (0.115 \pm 0.018)t \\ \gamma^* p &\to J/\psi \ p \ (\text{Nucl. Phys. B695(2004)3}) & \alpha_{IP}(t) = (1.20 \pm 0.03) + (0.07 \pm 0.05)t \\ \gamma p &\to J/\psi \ Y \ (\text{DIS2005}) & \alpha_{IP}(t) = (1.153 \pm 0.048) - (0.020 \pm 0.014)t \end{split}$$

- Universal QCD Pomeron?
- *t*-dependence of hard Pomeron is nor linear neither monotonic

J/ψ at high |t| vs pQCD models

BFKL:

Bartels, Forshaw, Lotter, Wüsthoff; Phys.Lett. B375(1996)301 Forshaw, Ryskin; Z.Phys. C68(1995)137 Enberg, Motyka, Poludniowski; Eur. Phys.J. C26(2002)219 DGLAP:

Gotsman, Levin, Maor, Naftali; Phys.Lett. B352(2002)37

- parameters tuned to the previous ZEUS data at $\langle W \rangle = 100\,{\rm GeV}$

pQCD provides satisfactory description of VMs production

- light VMs show transition from soft to hard regime as Q^2 rises
- pQCD can describe light VMs in the presence of hard scale $(Q^2, |t|)$
- VM production shows at large M_{VM}^2, Q^2 or |t| features of hard process:
- steep rise of the cross section with energy
- harder |t| distribution

Outlook:

- \bullet HERA II \Rightarrow more statistics in larger kinematic range
- HERA data are still an inspiration for development of the theory