Inclusive Diffraction in DIS – H1 Results

Paul Laycock University of Liverpool

Diffraction 2006, Milos

Overview

- Diffractive DIS at H1
 - Kinematics and Observables
- Comparison of Experimental Techniques
 - Rapidity Gap and Leading Proton Techniques Agree
- Factorisation, NLO QCD Fits and Diffractive PDFs
 - M_{γ} , t and x_{IP} Dependences Factorise from Q^2 and β Dependences
 - QCD and the High z Gluon
- Ratio of Diffractive : Inclusive Cross Sections
 - Gluon : Quark Ratio is the Same
- Diffractive Charged Currents
 - Predicted from Fit to NC Data
- New Preliminary Data
 - H1 and the M_{χ} Method

Diffractive DIS Kinematics

Diffraction 2006

Experimentally selecting

D

 $ep \rightarrow eXp$

Large Rapidity Gap in H1

- Measure Leading Proton (FPS)
- No proton dissociation
- Measure the *t* dependence
- Low detector acceptance

Require Large Rapidity Gap (LRG) spanning at least $3.3 < \eta < \sim 7.5$

Kinematics measured from X system, integrate $|t| < 1.0 \text{ GeV}^2$, $M_Y < 1.6 \text{ GeV}$

High detector acceptance \rightarrow precision

Data Sets and Observables

- FPS data sample 1999–2000 data, 28 pb⁻¹ hep-ex/0606003
- Measure *t* Dependence

$$\frac{d\sigma}{dt} \sim \exp B|t|$$

 And Differential Cross Section $\frac{d^4\sigma^{ep\to eXp}}{dxdO^2dx\,{\scriptstyle p}dt} = \frac{4\pi\alpha^2}{xQ^4} Y_+ \sigma_r^{D(4)}(x,Q^2,x_{I\!\!P},t)$

Where

$$Y_{+} = 1 + (1 - y)^{2}$$
 and $\sigma_{r}^{D(4)} = F_{2}^{D(4)} - \frac{y^{2}}{Y_{+}} F_{L}^{D(4)}$

• LRG Data – 1997 – 2000 e+ data hep-ex/0606004 • $3 < Q^2 < 13.5$ GeV² 2.0 pb⁻¹ • $13.5 < Q^2 < 105 \text{ GeV}^2$ 10.6 pb⁻¹ • $Q^2 > 133$ GeV² 61.6 pb⁻¹

 Measure Reduced Cross Section Integrated over $D(\alpha)$ D(A). t (

$$\sigma_r^{D(3)} = \int_{-1}^{t_{min}} \sigma_r^{D(4)} dt$$

Paul Laycock

Two Levels of Factorisation

QCD hard scattering collinear factorisation (Collins) at fixed x_{IP} and t $d\sigma_{partoni}(ep \rightarrow eXY) = f_i^D(x, Q^2, x_{IP}, t)) \otimes d\sigma^{ei}(x, Q^2)$ Applied after integration over M_y and t ranges

`Proton vertex' factorisation of β and Q^2 from x_{IP} , t, and M_Y dependences $f_i^D(x, Q^2, x_{IP}, t) = f_{IP/P}(x_{IP}, t) \cdot f_i^{IP}(\beta = \frac{x}{x_{IP}}, Q^2)$

Paul Laycock

Comparison of H1 LRG, H1 FPS, ZEUS LPS Data

Q² • ZEUS (LPS) and H1 (FPS)
[GeV²] Leading Proton Data agree very well
3.5 (they agree to 8% cf. 10% normalisation uncertainities)

- **ZEUS LPS** and **H1 FPS** scaled by global factor of 1.23 to compare with LRG $M_Y < 1.6$ GeV
- Very good agreement between Leading Proton and LRG methods after accounting for proton diss'n
- Both experimental techniques measure the same cross section

Detailed Comparison LRG v FPS

Paul Laycock

• $B(x_{IP})$ data constrain *IP*, *IR* flux factors in proton vertex factorisation model

Paul Laycock

t Slope Dependence on β or Q^2 ?

B measured double differentially in (β or Q^2) at fixed x_{IP}

• t dependence does not change with β or Q^2 at fixed x_{IP}

Paul Laycock

Effective Pomeron Intercept Independent of β and Q^2

→ Data support Proton Vertex Factorisation

Paul Laycock

Diffraction 2006

Page 14

Q² Dependence in More Detail

Paul Laycock

H1 2006 DPDF Fit, Overview

• *IP* component: Fit $\alpha_{IP}(0)$ (x_{IP} dependence). Simultaneously, fit 5 parameters of DPDFs (β and Q^2 dependences) using NLO QCD.

• *IR* component: fit one free parameter for normalisation, n_{IR} All flux params taken from previous H1 data. PDFs taken from Owens- π .

Kinematic Range and DPDF Parameterisation

• Fit is stable with variations of, e.g. β_{max} – the maximum value of β allowed in the fit

• Systematic variation of gluon density with minimum Q^2 of data included in fit for $Q_{min}^2 < 8.5 \text{ GeV}^2$. Stable for larger Q_{min}^2

• Fit all data with Q^2 8.5 GeV² (and $M_X > 2$ GeV, β 0.8)

• Parameterise quark singlet $z\Sigma(z,Q_0^2)$ and gluon $zg(z,Q_0^2)$ densities, where *z* is parton momentum fraction (= β for QPM).

Parameterisation used is (gluon insensitive to B_g) $z\Sigma(z,Q_0^2) = A_q z^{B_q} (1-z)^{C_q}$ and $zg(z,Q_0^2) = A_g (1-z)^{C_g}$

• Results reproducible nevitive by pyshon not yoo phialesults Paul Laycock Diffraction 2006

Page 17

H1 2006 DPDF Fit Results (log z scale)

 $Q_0^2 = 1.75 \text{ GeV}^2$ $\chi^2 \sim 158 / 183 \text{ d.o.f.}$

- Experimental uncertainty obtained by propagating errors on data through χ^2 minimisation procedure
- Theoretical uncertainty estimated by varying fixed parameters of fit and Q_0^2
- Singlet constrained to ~5%, gluon to ~15% at low *z*, growing considerably at high *z*

Paul Laycock

A Closer Look at the High z Region

to evolution becomes important ... sensitivity to gluon is lost

Paul Laycock

DPDFs (linear z scale)

• Lack of sensitivity to high z gluon confirmed by dropping (high z) C_g parameter, so gluon is a simple constant at the star scale!

•Fit B

 $\chi^2 \sim 164 / 184$ d.o.f. $Q_0^2 = 2.5$ GeV²

- Quarks very stable
- Gluon similar at low *z*
- Substantial change to gl at high z

Paul Laycock

Q² dependence of diffractive/inclusive ratio

Diffraction 2006

low x, gluon:quark ratio ~ 70%/30%, common to diffractive and inclus

Paul Laycock

Ratio diffractive/inclusive: x dependence

• Plot $\sigma_r^D / \sigma_r \operatorname{vs} x (\sim 1/W^2)$ at fixed βQ^2 (hence fixed M_X)

• Remarkably flat vs x over most of kinematic range (bins with large F_L or IR contribution not shown)

• Diffractive and inclusive cross sections cannot be described with the same $\alpha_{IP}(0)$, even if it is Q^2 dependent

Diffractive Charged Current

dơ/dx_{ip} [pb]

dσ/dQ² [pb/GeV²

10

$$u = d = s = \bar{u} = \bar{d} = \bar{s}$$

though statistics very limited so far

Paul Laycock

Inclusive Diffraction in DIS - H1 results Diffraction 2006

300

1000

 $Q^2 [GeV^2]$

New Data using Rapidity Gap Method

- Published data
- Prel. 99-00 data, 34 pb⁻¹
 10 < Q² < 105 GeV²
- Prel. 2004 data, 34 pb⁻¹
 17.5 < Q² < 105 GeV²

- Large increase in statistics at medium Q^2
- Consistent with published data

Paul Laycock

H1 LRG and ZEUS Mx

Comparisons of H1 LRG, H1 M_x and ZEUS M_x

 $Q^{2} [GeV^{2}] \bullet H1 M_{X}$ measurement limited in acceptance to low M_{X} (no forward plug calorimeter)

> • In this region of small subtraction the two experimental methods agree rather well

Suggests the difference comes from making the subtraction

```
Paul Laycock
```

Summary

- H1 diffractive measurements using FPS and LRG methods published
 - hep-ex/0606003 and hep-ex/0606004 (both accepted by EPJC)
 - Data from two methods agree in detail! Also agreement with ZEUS-LPS
- Proton vertex factorization holds: M_{y} , t and x_{IP} dependences factorise from β and Q^2
- DPDFs from NLO QCD fits to βQ^2 dependences (H1 2006 DPDF Fits A+B)
 - Quark singlet very well constrained (~5%)
 - Gluon constrained to ~15%, but poorly known at high z (see talk by M. Mozer)
- Ratio of diffractive/inclusive DIS measured
 - ~flat with Q^2 (fixed x, x_{IP}), also with x (fixed Q^2 , M_X)
- Diffractive Charged Currents predicted by fit to NC data, thought statistics are low
- New preliminary H1 data with large improvement in statistics at medium Q^2
 - M_X method agrees with other experimental techniques when subtraction is small

BACK-UP SLIDES FOLLOW

Inclusive Diffraction in DIS - H1 results Diffraction 2006

Page 31

Inclusive Diffraction in DIS - H1 results Diffraction 2006

Page 33

Inclusive Diffraction in DIS - H1 results Diffraction 2006

Page 35

Paul Laycock

Inclusive Diffraction in DIS - H1 results Diffraction 2006

Page 36

