$D^*(2010)^{\pm}$ and Dijet Diffractive Cross sections from the ZEUS experiment at HERA

Irina A. Korzhavina

On Behalf of the ZEUS Collaboration

OUTLINE:

- Introduction
- Dijets in Diffractive DIS
- Dijets in Diffractive Photoproduction
- Diffractive Photoproduction of $D^*(2010)$
- Result Comparison
- Summary

Workshop Diffraction 2006 Milos Island, Greece, September 5 - September 10 - 2006

ZÉUS

Diffraction: mediated by diffractive exchange (IP)

- ∇ quantum numbers of vacuum
- ∇ no colour transfer
- ∇ small momentum transfer in *t*-channel
- \implies observed as final states with large rapidity gaps (*LRG*), low M_X and sometimes $M_Y = m_p$

What is **I**P ?

 ∇ Object ?

- **R** egge trajectory
- Resolved IP model (dPDF's by H1 and ZEUS)

 ∇ pQCD:

- 2*g*-exchange model
- dPDF's (A.Martin, M.Ryskin, G.Watt)

The structure of the colour singlet is studied within QCD:

 ∇ QCD hard scattering factorisation theorem: (at fixed $x_{\mathbb{IP}}$ and t)

$$\sigma^D(\gamma^*p o Xp) = \sum_{parton \ i} f^D_i(x,Q^2,x_{I\!\!P},t) \otimes \sigma^{\gamma^*i}(x,Q^2)$$

 σ^{γ^*i} : universal hard scattering cross section f_i^D : universal partonic distribution functions (PDFs),

obey evolution equations

Theorem's validity is proved for diffractive DIS by J.Collins

CDF dijet rates: 5-10 times lower than expected ones using Diffractive PDF's from HERA

What this discrepancy may indicate:

Diffractive PDF's not universal ?

Factorization is not valid ?

A.B.Kaidalov et al. predict suppression factor $S_{res} = 0.34$ for resolved photon at HERA

Diffractive PDFs measurement results by H1 and ZEUS

Methods of data selection:LRG- H1 LRG FitsProton Tag.- ZEUS LPS Fit M_X - GLP Fit

 $g_{I\!\!P}(z)$ strongly differ: in shapes in normalization

Discrepances may reflect differences : in fitting procedures in constraints on dPDFs in Q^2 dependence of data sets

Uncertainty of each individual dPDF is unknown and their spread is, probably, the current best estimate of their uncertainties

Does diffraction obey QCD hard scattering factorisation ?

 $\begin{array}{lll} \nabla \text{ Compare lower } Q^2 < 1 \ \text{GeV}^2 \ (\text{PhP}) \ \text{and higher } Q^2 > 1 \ \text{GeV}^2 (\text{DIS}) \text{:} \\ \text{Expected to hold for DIS and direct PhP} \\ & \text{to fail for} & \text{resolved PhP} \ (\text{Probably}) \end{array}$

 ∇ Test dPDF's universality with identified hadronic final states

Various hard scales: Q^2 , P_T , m_Q Sensitivity to gluonic exchanges

I. Korzhavina "Diffractive production of $D^*(2010)^{\pm}$ and Dijets", Diffraction 2006

Kinematics

 $e(k) + p(p)
ightarrow e'(k') + X + p'(p') ext{ proceeds via } \gamma^*(q) + I\!\!P(P_{I\!\!P})
ightarrow X : X ext{ may be } D^*X', Jet_1Jet_2X', ext{ etc.}$

$$egin{aligned} Q^2 &= -q^2 \ & ext{PhP} \; Q^2 < 1 \; ext{GeV}^2 \ & ext{DIS} \; Q^2 \gtrsim 1 \; ext{GeV}^2 \ & ext{M}_X^2 &= (P_{I\!\!P} + q)^2 \end{aligned}$$

$$egin{aligned} x_{I\!\!P} &= rac{P_{I\!\!P} \cdot q}{p \cdot q} &= rac{M_X^2 + Q^2}{W^2 + Q^2}, & x_{I\!\!P} &\simeq rac{M_X^2}{W^2} ext{ in PhP} \ eta &= rac{Q^2}{Q^2 + M_X^2} & ext{(for DIS)} \ eta &= rac{Q^2}{Q^2 + M_X^2} & ext{(for DIS)} \ eta &= rac{\sum_{jets} E_T^{jet} \exp^{\eta_{jet}}}{2 \cdot x_{I\!\!P} \cdot E_p} & x_\gamma^{obs} &= rac{\sum_{jets} E_T^{jet} \exp^{-\eta_{jet}}}{2 \cdot y \cdot E_e} \end{aligned}$$

 $\Delta\eta\;,\;\;\eta=-ln(tan(heta/2))$

I. Korzhavina "Diffractive production of $D^*(2010)^{\pm}$ and Dijets", Diffraction 2006

Dijet production in diffractive deep-inelastic scattering

 $egin{aligned}
abla ep &
ightarrow eXp
ightarrow eJ_1J_2X'p \;\; 98-00 \; data \
abla 5 < Q^2 < 100 \;\; ext{GeV}^2, \; 100 < W < 250 \;\; ext{GeV}, \; e^+/e^- \; ext{detected} \
abla ext{ rapidity gap method} & \Longrightarrow x_{I\!P} < 0.03 \end{aligned}$

Different models were compared to the measured cross sections:

NLO QCD calculations:(DISENT):

- ∇ Diffractive PDF's
 - H1 2002 Fit(prel.)
 - ZEUS_LPS Fit
 - GLP Fit

LO QCD calculations: (LO MC's):

▼ RAPGAP

- H1 Fit 2 LO
- ∇ SATRAP
 - Saturation model

DiJet Production in Diffractive Deep-Inelastic Scattering

LO MC

Both LO MC (dir+res) consistent with data in shapes and normalization Resolved photon contributions essential (though small) for a better shape agreement with data.

DiJet Production in Diffractive Deep-Inelastic Scattering

ZEUS LPS and H1 2002(prel.): Data Shapes and Normalization reproduced GLP : Shapes and Normalization disfavoured by the data

I. Korzhavina "Diffractive production of $D^*(2010)^{\pm}$ and Dijets", Diffraction 2006

Dijet Production in Diffractive Deep-Inelastic Scattering

Wide spread in predictions due to uncertainties in dPDFs \Rightarrow difficult to draw a conclusion on QCD factorisation High precision data \Rightarrow be included in global fits to constrain $g_{\mathbb{P}}$

 $egin{aligned}
abla ep &
ightarrow eXp
ightarrow eJ_1J_2X'p \;\; 99-00 \; data \
abla Q^2 &< 1.0 \;\; ext{GeV}^2, \; 0.20 &< y &< 0.85, \; ext{no} \; e^+ \; ext{detected} \
abla ext{rapidity gap method} & \Longrightarrow x_{I\!P} &< 0.025 \end{aligned}$

Different models were compared to the measurement:

NLO QCD calculations :(by Klasen and Kramer):

 $\nabla dPDF's$

• H1 2002 Fit(prel.)

 $abla \Delta Y ext{ survival probability factor}$ $S_{res} = 1 ext{ or } 0.34 ext{ (R - on plots)}$

LO QCD calculations :(RAPGAP MC):

 $\nabla dPDPF's$

• H1FIT2 LO

0.025

X_{IP}

obs

Z_{IP}

1 1.5

 η^{jet1}

 $x_{\gamma}^{obs} < 0.75$ $x_{\gamma}^{obs} > 0.75$ LO ZEUS ZEUS (qd) ^{dI}xp/op 2000 (qd) 3000 da/dy (pb) dg/dy (pb) 300 ZEUS (prel.) 99-00 Energy scale uncertainty RAPGAP H1 Fit 2 × 0.53 resolved (GRV-G-HO) ZEUS (prel.) 99-00 150 Energy scale uncertainty ^{dl}2000 μορ 1000 RAPĞAP H1 Fit 2 × 0.53 200 resolved (GRV-G-HO) 100 < 0.75 100 50 0.02 0.72 0.59 0.72 0.85 0.005 0.015 0.025 0.33 0.59 0.005 0.015 0.02 0.2 0.33 0.46 0.01 0.2 0.46 0.85 0 0.01 A X_{IP} V $d\sigma/dz_{IP}^{obs}\left(pb\right)$ $d\sigma/dM_X$ (pb/GeV) (qd) dơ/dM_X (pb/GeV) 80F 150 $d\sigma/dz_{IP}^{obs}$ (100 5(20. 15 25 35 40 45 0.4 0.6 0.8 15 25 30 35 40 45 0.4 0.8 20 30 0.2 20 0.2 0.6 obs M_X (GeV) M_x (GeV) Z_{IP} dơ/dE^{jet1} (pb/GeV) E dơ/dE^{jet1} (pb/GeV) E dơ/dŋ^{jet1} (pb) dơ/dŋ^{jet1} (pb) 4(15E 10 20 9.5 11.5 13.5 15. $E_{T}^{jet1}(GeV)$ 11.5 13.5 -1.5 -0.5 0.5 7.5 15.5 7.5 9.5 15.5 -1 0 -1.5 -1 -0.5 0 0.5 1.5 1 $E_{T}^{jet1}(GeV)$ n^{jet1}

LO MC H1FIT2: consistent with data in shapes for full range of x_{γ}^{obs}

 $x_{\gamma}^{obs} < 0.75$

NLO

Shapes are reproduced. Calculations with $S_{res} = 1.0$ (too high) and $S_{res} = 0.34$ (too low) do not reproduce normalization of data.

 \implies DATA favour NLO global suppression

No evidence observed for a suppression of resolved photon relative to direct photon processes

 $egin{aligned} \nabla ep &
ightarrow eXp
ightarrow eD^*X'p & D^*(2010)^{\pm}
ightarrow K\pi\pi \ \mathrm{Mode} & (98\text{-}00 \ \mathrm{data}) \ \nabla Q^2 &< 1.0 \ \mathrm{GeV}^2 & 0.17 < y < 0.89 & \mathrm{no} \ e^+/e^- \ \mathrm{detected} \ \nabla \ \mathrm{rapidity} \ \mathrm{gap} \ \mathrm{method} \end{aligned}$

 $\sigma_{ZEUS} = 1.57 \pm 0.12 (stat)^{+0.20}_{-0.22} (syst) \pm 0.08 (pdiss) \; nb$

Different models were compared to the measured cross sections:

NLO QCD calculations:(FMNR):

LO QCD calculations:(RAPGAP):

 $\pmb{\nabla}$ Diffractive PDF's

• H1 2006 Fits A and B

 ∇ Diffractive PDF's

• H1 FIT2 LO

- ZEUS_LPS Fit
- GLP Fit

LO

Shapes well described by BGF+RES,

$$R=rac{\sigma_{res}}{\sigma_{bgf+res}}=0.35$$

LO

Scaling the resolved component by 0.34 would not give a significantly better description of the data in both shape and normalisation.

NLO(FMNR)

 $\mu_R=\mu_F=m_T^c$ Uncertainties due to $\Delta m_c = \pm 0.2$ GeV and $F_{\mu} = 0.5(2.0) \Rightarrow \text{LARGE}$

NLO(FMNR)

NLO QCD with ZEUS LPS and H1 2006 Fits reproduce data in normalization and shapes

NLO with GLP Fit: normalization is substantially lower than data.

Wide spread in predictions due to uncertainties in dPDFs \Rightarrow difficult to draw a conclusion on QCD factorisation

Comparison of D^* & DiJet PhP Results

Diffractive range : $x_{I\!P} < 0.03(JJ) - 0.035(D^*)$

Jet definition: k_T algorithm

 $egin{aligned} E_T^{j_{1(2)}} > 7.5(6.5) \,\, ext{GeV} \ \eta_{j_{1(2)}} & ext{Inclusive} & ext{Diffractive} \ -3 < \eta_j < 0 \,\, (\gamma^* p \,\, ext{r.f.}) & -1.5 < \eta_j < 2 (ext{lab. r.f.}) \ D^* \,\, ext{detection:} \,\, p_T(D^*) > 1.9 \,\, ext{GeV} \,\, |\eta(D^*)| < 1.6 \end{aligned}$

Comparison of D^* & DiJet PhP Results

 $\mathcal{R} = \sigma_{ZEUS} / \sigma_{NLO} ~(\mathrm{except~GLP})$

 $egin{aligned} ext{DiJets} & \mathcal{R}_{incl} \sim 1.0 & \mathcal{R}_{diff} \sim 0.5 - 0.6 \ \mathcal{R}_{incl} \sim 1.6 & \mathcal{R}_{diff} \sim 1.0 \end{aligned}$

Disagreement between dijet and charm results?

Dijet PhP: NLOQCD : calculations being in agreement with the inclusive measurement overestimate cross sections for diffractive dijet photoproduction by factor of ~ 2 .

 D^* PhP: NLOQCD : calculations look to be consistent with diffractive D* photoproduction but underestimate cross sections for the inclusive measurement.

Observation: $\mathcal{R}_{diff}/\mathcal{R}_{incl}$

Supports expectation: diffractive production of dijets and charm similar and gluon densities are universal

Summary

 ∇ Cross sections of dijet and D^* production in diffractive DIS and PhP were measured and compared to pQCD calculations in LO(MC) and NLO.

 ∇ LO MC and NLO QCD with H1 and ZEUS LPS Fits reproduce shapes of $\sigma's$ but overestimate the measurement for dijet PhP. NLO QCD predictions with GLP Fit underestimate considerably dijet DIS and D* PhP measurements.

Wide spread in predictions due to uncertainties in diffractive partonic densities prevent to draw a conclusion on QCD factorisation.

- ∇ Resolved photon contribution essential though small for DIS No evidence of suppression of resolved wrt direct photon contribution was found
- ∇ Comparison between dijet and charm production results supports expectation that diffractive production of both is similar and gluon densities are universal