ANGULAR CORRELATIONS IN 3-JET EVENTS and SUBJET MULTIPLICITIES AT ZEUS

Thomas Schörner-Sadenius Hamburg University

DIS 06 Tsukuba, April 19-24, 2006

(for the ZEUS collaboration)

ANGULAR CORRELATIONS

Motivation: Is it really QCD?

- ¶ QCD: accepted effective theory of strong interactions.
- ¶ But do we really see $SU(3)_{C}$?
 - spin-1/2 (1) quarks (gluons)?

¶ Several tests of both the color factors and the spin structure in e+e- and ep:

ANGULAR CORRELATIONS Investigating the gauge structure of QCD

¶ In 3-jet production, several color factor combinations contribute to cross section:

$$\sigma_{ep \to 3jets} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

ANGULAR CORRELATIONS – PHOTOPROD. Comparisons to MC models

- ¶ PYTHIA provides better description of the data than HERWIG.
- ¶ Keep in mind: quark-induced contribution with triple-gluon vertex, σ_B , has significantly different shapes than others, but typically small.

ANGULAR CORRELATIONS – PHOTOPROD.

Comparisons to different theories

¶ Calculation based on SU(3) shows good description of data.

- ¶ Comparison to calculations based on other models (color factors) show similar / very different behaviour sensitivity to color factors given!
- ¶ SU(N) in large-N limit or for C_F =0 clearly disfavoured.

ANGULAR CORRELATIONS - DIS

Comparisons to MC models

¶ MEPS MC model (LEPTO) provides better description of the data than CDM-based model (ARIADNE).

ANGULAR CORRELATIONS - DIS

Comparisons to different theories

 \P Calculation based on SU(3) shows good description of data.

- ¶ Comparison to calculations based on other models (color factors) show similar / very different behaviour sensitivity to color factors given!
- ¶ U(1)³ theory shows 10% differences to SU(3) same order of stat. errors.
- ¶ SU(N) in large-N limit or for C_F =0 clearly disfavoured.

DIS06, Tsukuba, Japan

UΗ

SUBJETS DISTRIBUTIONS IN DIS Motivation: Study pattern of QCD radiation

- ¶ Tests of QCD radiation so far performed using measurements of
 - integrated / differential jet shapes $\Psi(\mathbf{r})$ and
 - subjet multiplicities

and using LO MC models with parton shower models.

- \P At sufficiently high transverse energies E_{T} fragmentation effects negligible
 - \rightarrow internal jet structure can be calculated perturbatively
 - \rightarrow stringent test of pQCD calculations.
- ¶ Used here: Distribution of subjets within jets.

ZEUS

SUBJETS DISTRIBUTIONS IN DIS Event and Jet Selection

- ¶ Data sample: 98-00, 81.7pb⁻¹;
- $\P Q^2 > 125 \text{ GeV}^2;$
- ¶ standard cleaning cuts;
- ¶ longitudinally invariant k_{τ} algorithm in lab frame on call cells;
- ¶ at least one jet with
 - E_T > 14 GeV and
 - $-1 < \eta < 2.5$
- ¶ Exactly two subjets resolved in a jet at $y_{cut} = 0.05$.

- ¶ Analysis performed in the lab frame:
- Current NLO calculations have < 3partons in final state; maximally two can be reconstructed in one jet jet shape at $O(\alpha_s)$.
- In lab frame, up to 3 partons can be reconstructed in one jet – $O(\alpha_s^2)$. \rightarrow significant test of pQCD!
- ¶ Variables sensitive to subjet topology: $-E_{T.sub}/E_{T.iet}, -\eta_{sub}-\eta_{iet},$
 - $-|\phi_{sub}-\phi_{iet}|,$ $-\alpha_{sub}$.
- ¶ Using normalized cross-sections.
- ¶ Comparison to LO MC models and NLO QCD.

SUBJETS

Comparison to MC models 1

- ¶ Data show expected behaviour:
 - Symmetric behaviour of E_T^{sub}/E_T ; (two entries per event).
 - No production of subjets close together in phase-space.
 - The harder subjet tends to be in the backward direction.
- ¶ Both models describe the data reasonably well.

ZEUS

SUBJETS Comparison to MC models 2 – double-differentially

¶ Data show expected behaviour:

- Symmetric behaviour of E_T^{sub}/E_T ; (two entries per event).
- No production of subjets close together in phase-space.
- ¶ Both models describe the data reasonably well.

SUBJETS Comparison to NLO QCD 1

- ¶ NLO theory with up to three partons in a jet can reproduce data shapes very well.
- ¶ Theory supports hypothesis of hardest subjet being in backward direction.

SUBJETS Comparison to NLO QCD 2 – double-differentially ...

SUBJETS Gluon-induced contribution

- ¶ Slightly different shapes of quark- and gluon-induced contributions to the NLO cross section.
- ¶ Data better described by quark-induced contribution which in the phasespace considered amounts to 82%.
- \P Subjets arising from qg pairs seem to be more balanced in ET and closer together than those from qq pairs.

SUMMARY

¶ HERA offers good opportunity to test QCD dynamics and radiation pattern.

¶ ZEUS three-jet angular correlations

- supply access to underlying gauge group via color factor analysis
- provide discriminating power between SU(3)_C and other theories
- do not falsify $SU(3)_{C}$. although other groups also not excluded.
- ¶ ZEUS subjet distributions
 - allow study of QCD radiation pattern within jets in perturbative regime
 - are nicely described by NLO QCD calculations with up to three partons in one jet
 - are dominated by quark-induced contributions for the phase-space region in question (and provide discrimination power between gluon- und quarkinduced contributions).

