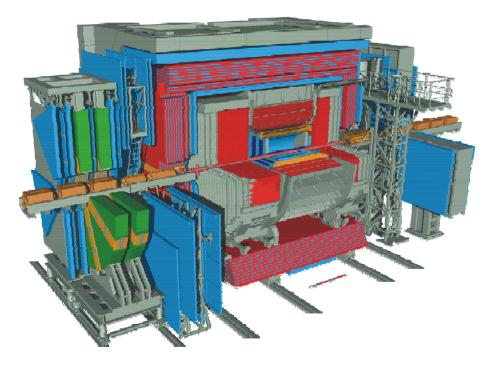


Prospects for a measurement of $\mathbf{F}_{\!\scriptscriptstyle L}$ with the


ZEUS detector

Daniel Kollár

Max-Planck-Institut für Physik, München

On behalf of ZEUS Collaboration

DIS2006 Tsukuba, Japan, April 20 - 24 2006

F_i in theory

ZEUS experiment measures cross-section

$$\frac{d^2\sigma}{dxdQ^2}(x,Q^2) = \frac{2\pi\alpha^2}{xQ^4} [Y_+F_2(x,Q^2) - y^2F_L(x,Q^2)] \qquad Y_+ = 1 + (1-y)^2$$

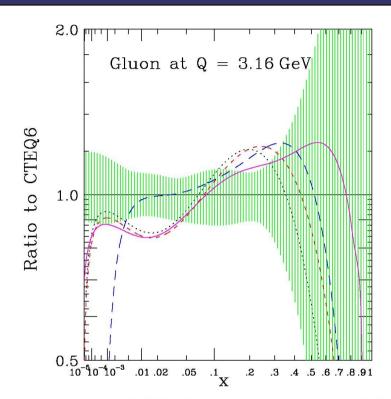
(at low $Q^2 \Rightarrow xF_3$ neglected)

 F_2 – dominant contribution to cross section

 F_L - related to cross section of longitudinally polarised photon $F_L = \frac{Q^2}{4\pi^2 \alpha} \sigma_L$ - in Quark-Parton Model (OPM): $\sigma = 0 \rightarrow F - 0$

- in Quark-Parton Model (QPM): $\sigma_i = 0 \implies F_i = 0$
- $-F_{i}$ nonzero in pQCD, in LO

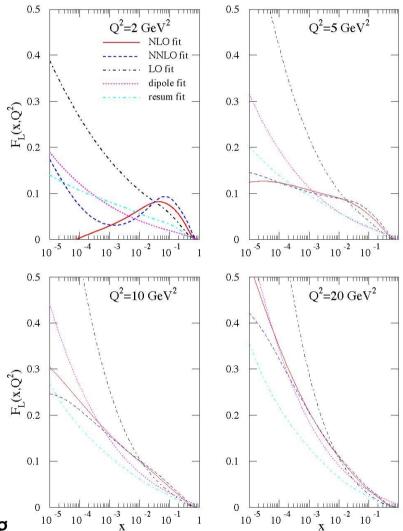
$$F_{L} = \frac{\alpha_{s}}{4\pi} x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3} F_{2} + 8 \sum_{q} e_{q}^{2} \left(1 - \frac{x}{z} \right) zg \right]$$


At small **x** the gluon density dominates

 \rightarrow F, has never been measured at small x

 \rightarrow measurement of F, would provide direct access to gluon densities

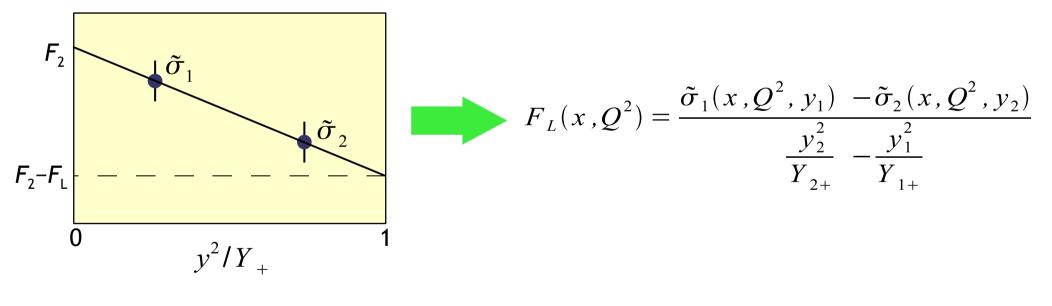
Status of F_L and gluon densities



mrst2001, mrst2002, mrst2003, mrst2004

- Relatively large uncertainties in gluon densities at small x
- *F_L* is poorly constrained by present data
 → different theoretical predictions
- Measurement of $F_{I} \rightarrow$ test of our QCD understanding
 - \rightarrow important input to QCD fits of PDF's

MRST predictions: F_{L} at LO, NLO, NNLO



F_L measurement with two beam energies

$$\frac{d^2 \sigma}{d x d Q^2} = \frac{2 \pi \alpha^2}{x Q^4} Y_+ \left(F_2 - \frac{y^2}{Y_+} F_L \right) \qquad \tilde{\sigma} \longrightarrow \text{ reduced cross section}$$

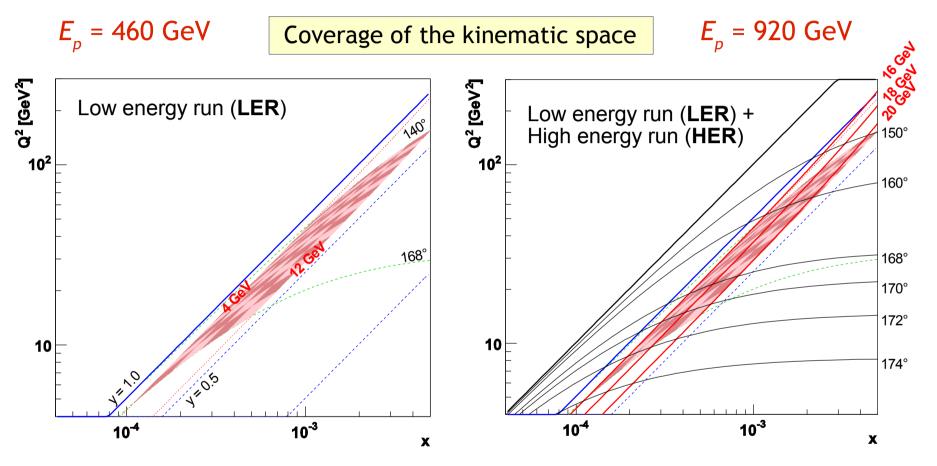
To separate F_2 and F_L one needs to measure the cross section at the same x and Q^2 but different values of $y \Rightarrow$ different s (different beam energies)

larger y difference more points (beam energies) \Rightarrow higher accuracy of F_{L} measurement

DIS 2006 Tsukuba, Japan, April 22nd 2006

Daniel Kollar, MPI Munich

3 months of HERA running at lower proton beam energy:


 \rightarrow 2 vs. 3 energy points

SCENARIO	<i>E_P</i> = 920 GeV	<i>E_P</i> = 460 GeV	<i>E_P</i> = 690 GeV
1	30 pb ⁻¹	10 pb ⁻¹	0 pb ⁻¹
2	30 pb ⁻¹	5 pb ⁻¹	5 pb ⁻¹

- \rightarrow lower energy \Rightarrow higher precision on F_{L} (350 GeV ?)
- \rightarrow to consider uncertainties with HERA setup times - lower luminosity at lower beam energy
- → we assume two beam energies (scenario 1)
- \rightarrow if accelerator setup and data taking smooth, could try third point at the end

Kinematic plane for the two runs

4 – 12 GeV in scattered electron energy in LER \Leftrightarrow 16 – 20 GeV in scattered electron energy in HER

Best F _L measurement	⇒ reach highest y possible	
	⇒ lowest possible electron energy in LER	

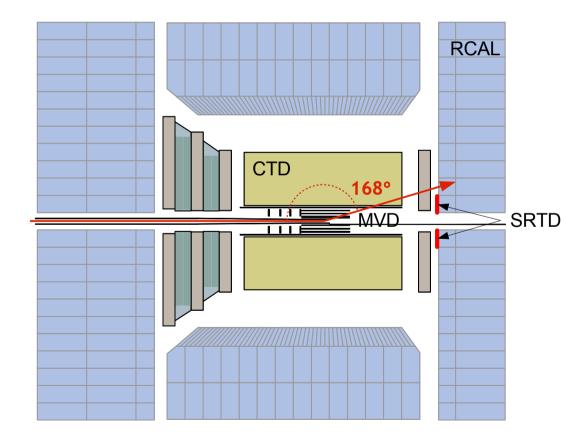
Daniel Kollar, MPI Munich

Need to reliably recognize the scattered DIS electron down to 4 GeV

→ Low Q^2 so electrons mostly in backward direction

Components:

RCAL:

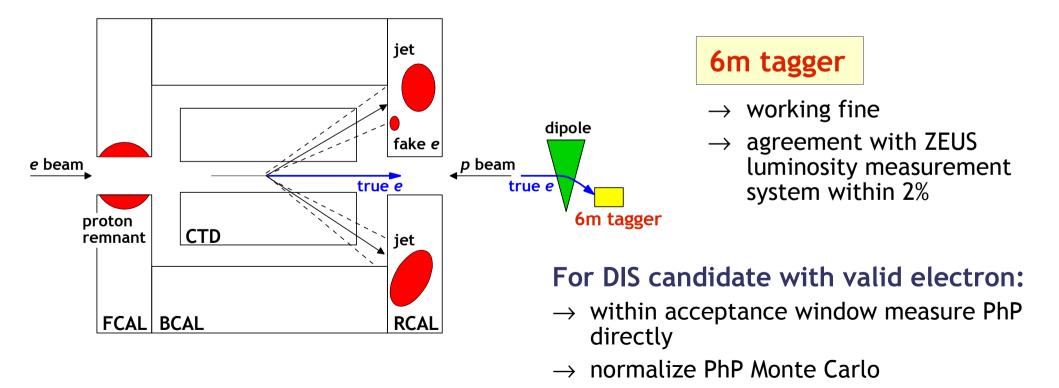

 \rightarrow looking at fraction of energy deposited in the EM part

HES + Presampler:

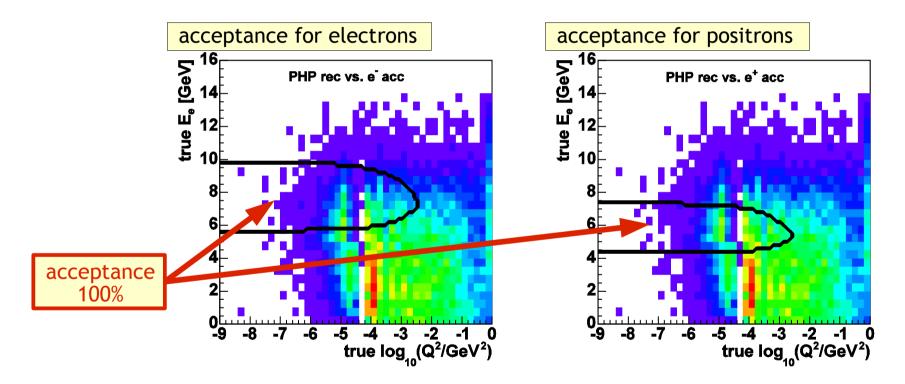
 \rightarrow looking at the shape of the shower

Tracking:

- \rightarrow photon-electron separation
- \rightarrow central tracking using CTD and MVD has acceptance only up to ${\approx}168^{\circ}$
- \rightarrow SRTD could help, however, behind a lot of material
 - \Rightarrow increased $\gamma \rightarrow e^+e^-$ probability



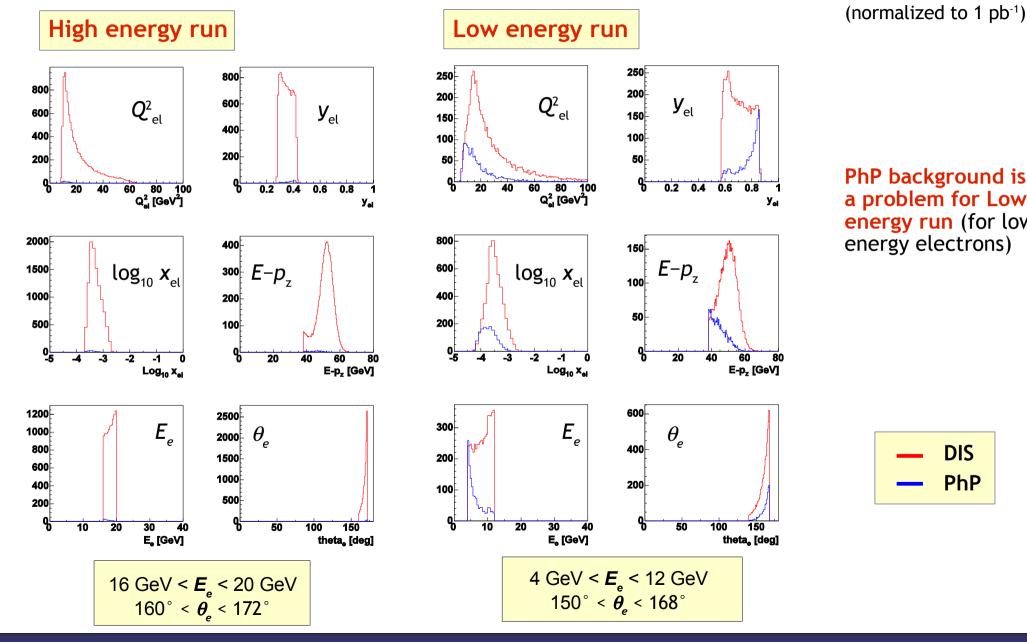
• largest contribution to background \leftarrow large cross section at low Q^2


PhP event:

- \rightarrow electron irradiates almost a real photon which then interacts with the proton
- ightarrow true electron with lower energy goes down the beam pipe
- $\rightarrow\,$ one of the particles in the detector recognized as DIS electron

→ PYTHIA PhP background distribution vs. 6m tagger acceptance (reconstructed as DIS events)

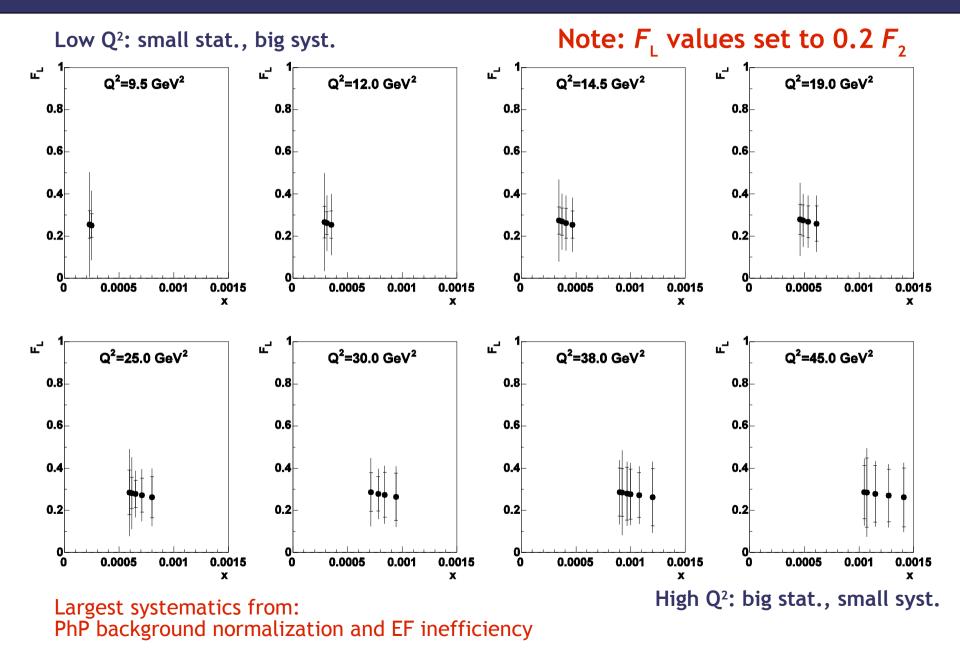
- **positron running advantageous** over electron running \rightarrow lower energy
- for e^+ running 6m tagger identifies 25% of php events
- possibly measure php and normalize MC


Use Monte Carlo to estimate the precision of the $F_{\rm L}$ extraction with the ZEUS detector

- → in HER select events with electron candidate with 16 GeV < E_{p} < 20 GeV, 160° < θ_{p} < 172°
- → in LER select events with electron candidate with 4 GeV < E_e < 12 GeV, 150° < θ_e < 168°, require track for E_e < 10 GeV
- → use 6m tagger to reject PhP if within the acceptance

Systematic checks:		Varied by:
\rightarrow	Photoproduction background normalization	10%
$ \rightarrow$	Electron finding inefficiency (including trigger)	10%
$ \rightarrow$	Energy scale	2% at 4 GeV \rightarrow 1% at 27.5 GeV
\rightarrow	Luminosity uncorrelated	1%
$ \rightarrow$	Luminosity correlated	2%

Reconstructed kinematic variables

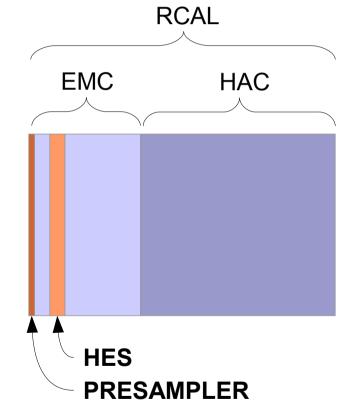

PhP background is a problem for Low energy run (for low energy electrons)

DIS 2006 Tsukuba, Japan, April 22nd 2006

Uncertainties of F_L extraction

Hadron-electron separation using shower size in the calorimeter

HES:

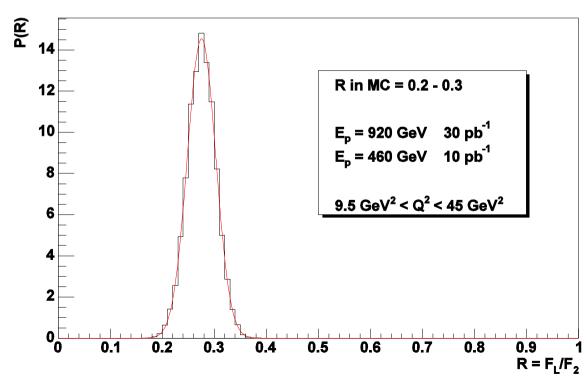

- \rightarrow Silicon diodes at $4X_{0}$ in the EMC
- \rightarrow ~ shower maximum for several GeV electrons
- \rightarrow small interaction probability for hadrons

PRESAMPLER:

- \rightarrow Scintillator tiles covering EMC
- $\rightarrow\,$ energy correction for showers developed in the dead material before reaching cal
- \rightarrow small output for hadrons

Using HES and Presampler to improve electron finding outside the tracking acceptance.

Under study...



Use Bayesian approach to extract

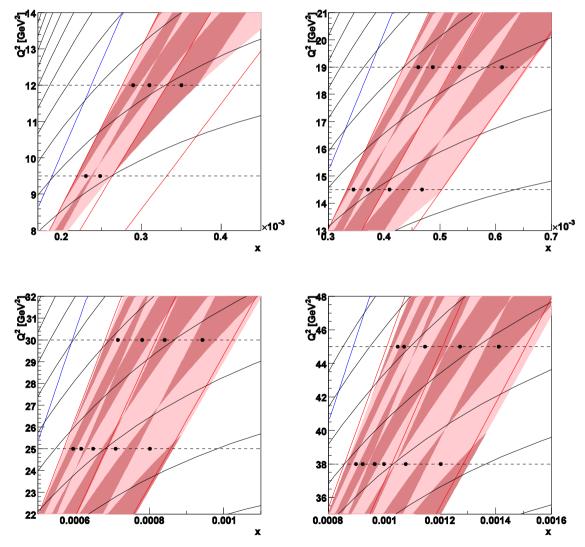
$$R = \frac{F_L}{F_2}$$

- \rightarrow suppose **R** is a constant, i.e. we can combine all bins
- \rightarrow include all uncertainties
- \rightarrow MC sample had a value of **R** = 0.2 0.3

\rightarrow extracted *R* uncertainty \approx 0.027

Average <i>F</i>_L/F₂ from theoretical predictions:			
CTEQ5D	0.25		
MRST2002 LO	0.3		
MRST2004 NLO	0.18		
MRST2004 NNLO	0.18		

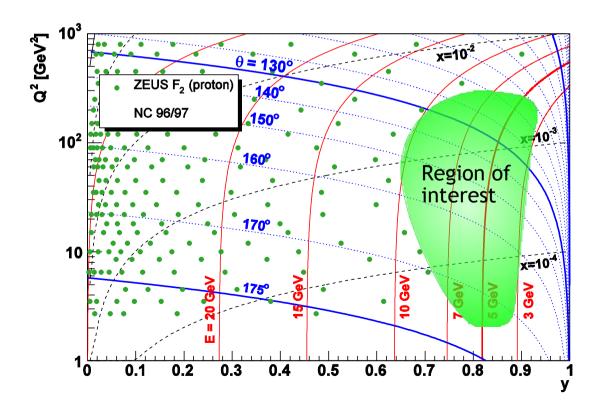
- **F**_L should be measured
 - basic ingredient in the cross section
 - test of perturbative QCD at small **x**
 - would bring information on gluon density
- kinematic range and precision of F_1 measurement with ZEUS is moderate
- however, there is room for improvement
 - extending Q^2 and x range
 - better electron finding with HES and Presampler
 - better understanding of the PhP background using 6m tagger \rightarrow reduction of the PhP normalization systematics


ZEUS Collaboration has expressed interest in low energy running to the DESY PRC (will be meeting in May)

BACKUP SLIDES

(x,Q^2) points for F_L extraction

 $Q^2 = 9.5, 12, 14.5, 19, 25, 30, 38, 45 \text{ GeV}^2$


- \rightarrow 2-6 x points/ Q^2 point
- \rightarrow Limitation at low Q^2 is tracking requirement
- \rightarrow Limitation at high Q^2 is statistics

DIS 2006 Tsukuba, Japan, April 22nd 2006

- \rightarrow clearly, electron finding at low energies is a challenge
- \rightarrow the ZEUS detector is not the ideal device
 - \Rightarrow we want to perform a NC cross-section measurement at high ${\bf y}$ with current beam energy
 - → this will allow to prepare and test detectors and techniques for electron finding and background rejection

New territory for ZEUS F_2 measurement

