Measurement of Event Shape Variables in Deep Inelastic Scattering at HERA

- General idea of the event shape measurement
- •Event shapes in Breit frame
- Power Corrections
- •QCD theory of the event shapes in DIS
- Data selection
- •Results and QCD fit
- Summary and conclusions

Jacek Turnau for the H1 Collaboration DIS 2006, April 20-24 Tsukuba

J. Turnau Event Shapes

Events shapes in Breit Frame

•In parton model picture (Born level) transformation to Breit Frame (BF) alignes proton, exchanged boson and struck quark

•Particles building proton remnant follow in proton direction (remnant hemisphere - RH) while struck quark fragments go into opposite, current hemisphere (CH). BF provides best separation from proton remnant particles for which QCD calculations do not account

 Event shapes F are calculated by summing over all hadronic final state objects in current hemisphere

• In presence of QCD radiation picture is more complex : parton fragments can leak into RH, CH can be even empty so the definition of event shape contains condition of minimal energy in CH

Event shapes in Breit Frame

•Event shapes F are defined such that $F \rightarrow 0$ for pencil-like hadron configurations aligned with z-axis.

-Born level quark in Breit Frame has $p_{T}\text{=}0$ so its fragments produce $F{\approx}0$

•Multijet configurations produce F > 0 in extreme F ${\approx}1$

Power correction: analytical description of hadronisation

Standard way (applied in most QCD studies) uses for hadronisation Monte Carlo programs : JETSET, PYTHIA, HERWIG, PHOJET etc.

Power corrections: part of ambitious program to describe hadronic final states in terms of Feynmann diagrams parametrizing confinement with one universal constant

Power corrections provide much cleaner connection between parton and hadron levels

$$\alpha_0 = \frac{1}{\mu_I} \int_0^{\mu_I} dk \alpha_s(k^2) \quad \mu_I = 2 \text{ GeV}$$

"average infrared coupling"

"effective nonperturbative coupling"

- Choose C&IS observable, get NLO+NLL pQCD prediction
- $\boldsymbol{\cdot}$ For scales below $\mu_{\mathtt{I}}$ apply $\alpha_{\mathtt{0}}$
- do it again for other observables

•Check that α_0 is universal, i.e. the same for different observables, processes (e⁺e⁻, DIS, hadron-hadron), perturbative scale Q, DIS kinematics ...

QCD Theory used to fit the event shape distributions

Theory element	Package	Authors				
pQCD prediction in NLO	DISENT	Graudentz, Dasgupta, Sal	am			
$\frac{1}{\sigma} \frac{\mathrm{d}\sigma^{NLO}}{\mathrm{d}F} = c_1(F,Q)\alpha_s(\mu) + c_2(F,Q)\alpha_s^2(\mu)$	DISPATCH					
Resummation of terms L= α_s log2(1/F) + matching to NLO	DISRESUM	Dasgupta, Salam (2002)				
Valid for not too small $F \rightarrow$ available only for distributions (not for means)						
Power correction for hadronisation	Analytic	Dokshitzer, Webber,				
$\frac{1}{\sigma_{tot}} \frac{\mathrm{d}\sigma(F)}{\mathrm{d}F} = \frac{1}{\sigma_{tot}} \frac{\mathrm{d}\sigma^{\mathrm{pQCD}}(F - a_F P)}{\mathrm{d}F}$	form	Dasgupta, Salam				
Factor a _F calculated from Feynman diagrams for each observable						
$P=P(\alpha_0,\alpha_s)$ is a universal function						
$\mathcal{P} = \frac{16}{3\pi} \mathcal{M} \frac{\mu_I}{Q} [\alpha_0(\mu_I) - \alpha_s(Q) - \frac{\beta_0}{2\pi} \left(\ln \frac{Q}{\mu_I} + \frac{K}{\beta_0} + 1 \right) \alpha_s^2(Q)]$						
J. Turnau Event Shapes						

The Data

- •Inclusive high Q² NC DIS selection 1995-2000 (HERA 1): 106 pb^{-1}
- •Phase space : 196 < Q^2 < 40,000 GeV² 0.1 < y < 0.8
 - Selected Events: 107,693 Large !

• Binning in Q

# of Q bin	1	2	3	4	5	6	7
Interval/GeV	14-16	16-20	20-30	30-50	50-70	70-100	100-200
Events	26614	35324	30536	12015	2102	867	235

- Binning in event shape variables, 8-10 bins
- •Background (mainly from γp) negligible in all 322 bins

Corrections using RAPGAP 2.8 in two steps:

- •For limited detector resolution: Bayes unfolding (d'Agostini)
- •For limited acceptance & QED : bin-to-bin

H1 data for thrust, jet mass, C-parameter and jet broadning (τ , τ_c , ρ , C, B)

0.5

10

H1

•Not all data points are used in NLO+NLL+PC fit — : theory has limited range of applicability

•Fit extrapolation •••••• to "forbidden" data points seems to work in many cases

•Except for highest Q² bins errors are really small !

Event Shapes

Fitted values of α_0 and α_s

•Results of NLO+NLL+PC fit to events shapes in ($\alpha_s \alpha_0$) plane

•Two groups of points correspond to event shapes with and without reference to exchanged boson axis

•Consistency within each group excellent (few %)

•Overall consistency also good α_{0} = ~0.5, consistent within ~10%

 consistent with e+e- event shapes~15%

•strong support for α_0 universality !

$$\alpha_s(m_Z) = 0.1198 \pm 0.0013 \text{ (exp)} \stackrel{+0.0056}{-0.0043} \text{ (theo)}$$

 $\alpha_0 = 0.476 \pm 0.008 \text{ (exp)} \stackrel{+0.018}{-0.059} \text{ (theo)},$

J. Turnau Event Shapes

Results of event shape NLO+NLL+PC fits

hep-ex/0512014, accepted by Eur. Phys. J.

strong coupling constant $lpha_{s}(m_{Z})$						
event shape variable	τ_c	τ	В	ρ_0	C	
central value	0.1171	0.1202	0.1196	0.1174	0.1156	
uncertainties:						
total	+0.0068 -0.0062	+0.0072 -0.0058	+0.0072 -0.0064	+0.0070 -0.0056	+0.0073 -0.0054	
total experimental	± 0.0035	± 0.0021	± 0.0014	± 0.0021	± 0.0021	
statistical experimental	± 0.0014	± 0.0006	± 0.0004	± 0.0010	± 0.0009	
systematic experimental	± 0.0033	± 0.0020	± 0.0013	± 0.0019	± 0.0019	
total theoretical	+0.0058 -0.0051	$+0.0068 \\ -0.0054$	$+0.0071 \\ -0.0063$	+0.0067 -0.0052	+0.0069 -0.0049	
μ_r dependence	+0.0054 -0.0048	+0.0058 -0.0043	+0.0056 -0.0044	+0.0064 -0.0050	+0.0069 -0.0048	
μ_I dependence	+0.0002 -0.0002	$< 10^{-4}$	$< 10^{-4}$	$+0.0002 \\ -0.0002$	$< 10^{-4}$	
fit interval	+0.0015 -0.0018	+0.0007 -0.0022	+0.0001 -0.0009	+0.0010 +0.0007	+0.0003 -0.0004	
parton density functions	+0.0002 -0.0001	+0.0003 -0.0010	+0.0006 -0.0007	+0.0001 -0.0002	+0.0002 -0.0001	
matching scheme	+0.0015 +0.0005	+0.0036 +0.0022	$^{+0.0043}_{+0.0043}$	$^{+0.0018}_{+0.0009}$	-0.0005 -0.0009	

Results of event shape NLO+NLL+PC fits

hep-ex/0512014, accepted by Eur. Phys. J.

non perturbative coupling $lpha_0(\mu_I=2{ m GeV})$						
event shape variable	τ_c	τ	В	ρ_0	C	
central value	0.488	0.513	0.519	0.486	0.481	
uncertainties:						
total	+0.037 -0.035	+0.034 -0.039	+0.059 -0.049	+0.023 -0.035	+0.028 -0.042	
total experimental	± 0.021	± 0.025	± 0.039	± 0.014	± 0.008	
statistical experimental	± 0.009	± 0.009	± 0.006	± 0.006	± 0.005	
systematic experimental	± 0.019	± 0.023	± 0.038	± 0.013	± 0.007	
total theoretical	$+0.030 \\ -0.027$	+0.022 -0.029	+0.044 -0.029	+0.019 -0.032	+0.026 -0.041	
μ_r dependence	+0.020 -0.026	+0.018 -0.027	+0.030 -0.028	+0.017 -0.027	+0.022 -0.038	
fit interval	+0.022 -0.007	+0.008 -0.005	+0.030 +0.006	-0.003 -0.016	+0.006 -0.003	
parton density functions	$+0.001 \\ -0.001$	+0.006 +0.004	+0.011 +0.003	+0.001 -0.001	+0.001 -0.002	
matching scheme	-0.005 -0.012	-0.009 -0.023	+0.006 -0.010	-0.006 -0.009	$-0.014 \\ -0.014$	
correlation coefficient α_s, α_0	-0.85	-0.76	-0.75	-0.78	-0.51	
χ^2 / d.o.f. (experimental errors)	1.13	0.51	0.81	1.40	1.20	

Fits to mean values of event shapes

•Fits to mean values of event shapes do not include resummation (resummation valid only for distributions)

- consitency between event shapes much worse
- \bullet consistency with α_{s} world average much worse than for fits to spectra

We guess: triumph of resummed theory

J. Turnau Event Shapes

Summary and Conclusions

• Accurate measurements of event shape variables in deep-inelastic ep scattering based on 106 pb⁻¹ in the kinematic region 14 < Q < 200 GeV 0.1 < y < 0.8 were presented

• Resummed perturbative QCD predictions together with power corrections give good description of spectra of thrust, jet broadning, jet mass and C-parameter

• The results of a two-parameter fit of the strong coupling constant α_s and the effective nonperturbative coupling α_0 are consistent with each other. The values of α_s agree with world average.

•The parameter α_0 which accounts for hadronisation is consistently within 10% around theoretically expected value 0.5. Similar results are obtained in e^+e^- event shape analyses. Universality of effective nonperturbative coupling finds strong support from event shapes measurements

•Caveat: theoretical uncertainty is much larger then experimental

Backup slides

Comparison of ZEUS and H1 event shapes (unofficial)

World measurements of α_s

J. Turnau Event Shapes

Universality of the infrared coupling

5.3 On the universality of the infrared coupling - 2003

One standard deviation ellipses in the $\alpha_s(M_Z) - \alpha_0$ plane [57].

Results of event shape NLO+NLL+PC fits

$$\alpha_s(m_Z) = 0.1198 \pm 0.0013 \text{ (exp)} {}^{+0.0056}_{-0.0043} \text{ (theo)}$$
,
 $\alpha_0 = 0.476 \pm 0.008 \text{ (exp)} {}^{+0.018}_{-0.059} \text{ (theo)}$,
 $\chi^2/\text{d.o.f.} = 4.9/2.$

The theoretical uncertainties on the fitted values of α_0 and $\alpha_s(m_Z)$ are determined from the changes to the results under variation in the procedure as follows:

- bins with lower boundaries at F = 0 are omitted;
- the renormalisation scale μ_r is varied from Q/2 to 2Q;
- the infrared matching scale μ_I is varied from 1.5 GeV to 2.5 GeV;
- the CTEQ proton pdfs are replaced by three versions of the MRST2001 set [36], which differ in α_s(m_Z) from 0.117 to 0.121;
- instead of $\log R$ the modified M and modified M^2 matching schemes [10] are used.

Event shapes:

With reference to boson axis:

 $\tau = 1 - T$ with $T = \frac{\sum_{h} |\vec{p}_{z,h}|}{\sum_{h \in I} |\vec{p}_{z,h}|}$ Thrust = || momentum component •Jet Broadening =⊥ momentum component $= \frac{\sum_{h} |\vec{p}_{t,h}|}{2\sum_{h} |\vec{n}_{h}|}$ Sensitive to radiation (quark recoil effect)

$$\tau_{C} = 1 - T_{C} \quad \text{with} \quad T_{C} = \max_{\vec{n}_{T}} \frac{\sum_{h} |\vec{p}_{h} \cdot \vec{n}_{T}|}{\sum_{h} |\vec{p}_{h}|}$$

$$\rho = \frac{(\sum_{h} E_{h})^{2} - (\sum_{h} \vec{p}_{h})^{2}}{(2\sum_{h} |\vec{p}_{h}|)^{2}}$$

$$C = \frac{3}{2} \frac{\sum_{h,h'} |\vec{p}_{h}| |\vec{p}_{h'}| \sin^{2} \theta_{hh'}}{(\sum_{h} |\vec{p}_{h}|)^{2}}$$

•Jet mass Hadron-hadron correlation

component)

Without reference to

boson axis (like in e⁺e⁻)

Thrust (maximizing

 $v_{hh'}$