

New H1 Results on Isolated Leptons and Missing P_T at HERA

David South (DESY)

XIVth International Workshop on Deep Inelastic Scattering

Outline

- Introduction to HERA, H1 and Isolated Leptons
- Standard Model Signal and Background Processes
- Isolated Lepton Selection
- Latest H1 Results
- Possible Interpretations and Future Prospects
- Summary and Conclusions

HERA and the H1 Experiment

Page 2

Introduction to Isolated Leptons

- H1 measurement of events containing P_T^{miss} and high P_T leptons (e or μ)
- HERA I analysis (118 pb⁻¹):
 - 19 events in the data (1 in e^{-p}) compared to 14.5 ± 2.0 expected from SM
 - An excess of data events is observed at large hadronic transverse momentum
- The events continue to be seen in the new HERA II data

Standard Model Signal Processes

- Main SM contribution to signal from real W production via photoproduction with subsequent decay to leptons
 - Total cross section of order 1 pb, with 10% of W decays to each lepton flavour
 - Modelled using the EPVEC generator with a NLO QCD correction (Diener et. al.): modifies LO cross section by about 10%, reduces theoretical error to 15%

• Two additional processes included that contribute to the signal topology:

David South (DESY)

Phase Space Selection

- Initial event selection:
 - NC / CC / muon triggers
 - Event timing requirements, clean event sample
 - Non-ep background finders
- Phase space selection for all subsequent selections employed:
 - Look for a high P_T lepton (electron or muon), in the main body of the detector (extends in polar angle to θ_1 < 2.44 rad), in events with large missing calorimetric transverse momentum

Phase Space Selection

 $5^{\circ} < \theta_{|} < 140^{\circ}, P_{T}^{|} > 10 \text{ GeV}, P_{T}^{calo} > 12 \text{ GeV}$

Standard Model Background

- Main SM Background processes:
 - Neutral and Charged Current and lepton pair production (also photoproduction)

e: Neutral Current	e, µ: Charged Current	μ: Lepton Pair Production
$e(k^{\mu})$ $e'(k'^{\mu})$ $\gamma, Z^{\circ}(q^{\mu})$ $p(p^{\mu})$ X	$e(k^{\mu})$ $v(k^{\mu})$ $W^{\pm}(q^{\mu})$ $p(p^{\mu})$ X	e N p N x I
real electron and fake missing P _T from mismeasurement	misidentified electron or muon and real missing P _T	real muon and fake missing P _T from mismeasurement

Dedicated study samples employed to ensure control of SM background

Isolated Lepton Event Selection

Variable	Electron	Muon		
θ_1	$5^{\circ} < \theta_1 < 140^{\circ}$		Phase space selection	
P_T^{-1}	> 10 GeV			
P_{T}^{calo}	> 12 GeV			
P_T^{miss}	> 12	GeV	Only cut on hadronic	
P _T ^X	_	> 12 GeV	\checkmark P _T in muon channel	
D _{jet}	> 1.0		Isolation of lenton	
D _{track}	> 0.5 for $\theta_e \ge 45^\circ$	> 0.5		
ζ_l^2	$> 5000 \text{ GeV}^2 \text{ for } P_T^{\text{calo}} < 25$ GeV	-	Cuts designed to	
V_{ap}/V_{p}	< 0.5 (< 0.15 for P_T^{e} < 25 GeV)	< 0.5 (< 0.15 for P_T^{calo} < 25 GeV)	background, whilst preserving	
$\Delta \varphi_{l\text{-}X}$	< 160°	< 170°		
δ_{miss}	> 5 GeV 	-	large signal purity	
# isolated µ	0	1		

• only if one e candidate is detected, with the same charge as the beam lepton

Phys. Lett. B 561 (2003) 241

H1 Results from HERA I Analysis

H1 e [±] p data HERA I (118 pb ⁻¹)	e channel obs. / exp.	μ channel obs. / exp.	e and μ channels obs. / exp.
Full sample	11 / 11.5 ± 1.5	8 / 2.9 ± 0.5	19 / 14.5 ± 2.0
$P_T^X > 25 \text{ GeV}$	5 / 1.8 ± 0.3	6 / 1.7 ± 0.3	11 / 3.5 ± 0.6

Analysis of HERA II Data

- HERA upgrade has provided and continues to provide a rich harvest of new data for analysis within H1
 - The data is of good quality, providing new measurements of the polarisation dependence of the NC and CC cross sections
 - See talks by A. Nikiforov and B. Antunovic
- We now have a factor of 10 more e⁻p data than in the HERA I phase - and more coming in right now
- The isolated lepton analysis has been performed on this new data, resulting in more than double luminosity than in the published paper

Isolated Lepton Event Display

- Elastic HERA II e + P_T^{miss} event in e⁺p data
- $P_T^e = 47 \text{ GeV}, P_T^{miss} = 47 \text{ GeV}, P_T^X = 0 \text{ GeV}$

Isolated Lepton Event Display

- High P_T^X HERA II e + P_T^{miss} event in e⁺p data
- $P_T^e = 37 \text{ GeV}, P_T^{miss} = 44 \text{ GeV}, P_T^X = 29 \text{ GeV}$

Results from H1 e[±]p data

- <u>Total analysed luminosity from</u> <u>HERA I and II datasets</u> : 279 pb⁻¹
 - 10 events (1 muon) observed in 53 pb⁻¹ of HERA II e⁺p data, SM: 6.1 ± 0.9
 - 11 events (1 muon) observed in 107 pb⁻¹ of HERA II e⁻p data, SM: 13.8 ± 1.9

H1 e [±] p data HERA I+II (279 pb ⁻¹)	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
Full sample	30 / 27.2 ± 3.8 (68%)	10 / 7.2 ± 1.1 (81%)	40 / 34.3 ± 4.8 (71%)
$P_T^X > 25 \text{ GeV}$	11 / 4.7 ± 0.9 (69%)	6 / 4.3 ± 0.7 (78%)	17 / 9.0 ± 1.5 (73%)

Results from H1 e⁺p and e⁻p data

Summary of Isolated Lepton Results

$P_T^X > 25 \text{ GeV}$	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
H1 e ⁺ p data 158 pb ⁻¹	9 / 2.3 ± 0.4 (80%)	6 / 2.3 ± 0.4 (84%)	15 / 4.6 ± 0.8 (82%)
H1 e ⁻ p data 121 pb ⁻¹	2 / 2.4 ± 0.5 (62%)	0 / 2.0 ± 0.3 (76%)	2 / 4.4 ± 0.7 (68%)
H1 e [±] p data 279 pb ⁻¹	11 / 4.7 ± 0.9 (69%)	6 / 4.3 ± 0.7 (78%)	17 / 9.0 ± 1.5 (73%)

- Excess observed at large P_T^X in e⁺p data but not in e⁻p
- Probability in e⁺p sample for SM to fluctuate up to observed number of data events = 3.4σ effect
- More information can be found in

http://www-h1.desy.de/psfiles/confpap/EPS2005/H1prelim-05-164_PRC_Nov05.ps

• For the H1 analysis of the τ channel, see talk by S. Xella

Single Top Production at HERA

Certain BSM Models could favour e⁺p over e⁻p

• Particle coupling to e-q with fermion number F=0 :

Large mass i.e. large x_{Bj} d >> d, hence $\sigma(e+) >> \sigma(e-)$

• Another example : Squarks in R-parity violating SUSY

If LSP is $\widetilde{\nu}_{\tau}$ and no large RpV coupling involving the τ : $\widetilde{\nu}_{\tau}$ could be long-lived

RpV via couplings involving two 3rd generation fields, light sbottom. Large $M_{top} \rightarrow large x_{Bj}$

Future Prospects from HERA II

• Extrapolation for e⁺p data

- Assume that events continue to show up at the rate observed in H1
- A 4 5 σ effect is possible
 with ~ 8 further months of
 H1 e⁺p data from HERA II, if
 20 pb⁻¹ / month

This analysis represents the best chance for a discovery at HERA

Conclusions

- An excess of events containing isolated electrons or muons with large missing P_T was observed by H1 in 118 pb⁻¹ of HERA I data
 - This data was mainly e⁺p collisions
- H1 has now analysed 279 pb⁻¹ of data, which includes a substantial increase in statistics of e⁻p data
- The observed HERA I excess persists in the e⁺p data only
- Several BSM or exotic scenarios could provide the signal but no there is no definite candidate
- More (e⁺p) data needed from HERA II to clarify the situation
 And it's coming in right now!