DIS2006

XIV International Workshop on Deep Inelastic Scattering

20/April/2006 - 24/April/2006

Heavy stable-particle production in NC DIS with the ZEUS detector

Takahiro Matsumoto, KEK For the ZEUS collaboration

Motivation

- Light nuclei production is interesting topics in heavy ion collisions
 - Possible to test how neuclei are produced in the early of universe
 - Fireball is created by collision (~a few μ s after Big Bang)
 - Light neuclei is produced in the thermal freeze out stage
 - Coalescence model can be applied for formation
- However, still few measurements in elementary collision <u>Some results on antideuteron</u>
 - ARGUS (e⁺e⁻ → γ^* →qq); < 1.7 x 10⁻⁵ anti-d/evt
 - OPAL ($e^+e^- \rightarrow Z^0$); < 0.8 x 10⁻⁵ anti-d/evt
 - ALEPH (e⁺e⁻ \rightarrow Z⁰); 0.6 x 10⁻⁵ anti-d/ev<u>t; hep-ex/0604023 New!</u>
 - ARGUS (e+e- \rightarrow Y(1S,2S)); <u>6x10-5</u> anti-d/evt, d/p ~ 3x10-4 (19 anti-d's)
 - H1 (Photoproduction); $d/p \sim 5 \times 10^{-4}$ (45 anti-d's)

Different production mechanism among processes?

 \rightarrow We searched for heavy stable-particles in NC DIS (first results)

- Possible relations between antideuteron and pentaquarks are recently discussed
 - Both are multi-quark states, formed with coalescence model, hard to observe in e+e-process

Data sample

ZEUS

- HERA-I (1996-2000)
- L = 120/pb

e

D

- e+p (√s=300 GeV); 39/pb
- e+p (√s=318 GeV); 64/pb
- e-p (√s=318 GeV); 17/pb

(4_momentum transferred)

γ,Z

е

 $Q^2 = -q^2$

- DIS selection
 - $Q^2 > 1 \text{ GeV}^2$
 - $E_{e} > 8.5 \text{ GeV}$
 - $-35 < E P_z < 65 \text{ GeV}$
 - $|Z_{vertex}| < 40 \text{ cm}$

 $N_{DIS} = 2.68 \times 10^7 (0.22 \ \mu b)$

Selection of heavy stable-particles

- Good reconstructed charged tracks with CTD
 - p_T>0.15 GeV/c
 - Started from 1st layer
 - More than 40 CTD hits
- Particle identification with dE/dx $\sigma(dE/dx)/dE/dx \sim 10\%$
- Originated from primary vertex

$$\Delta Z \quad (= Z_{\text{track}} - Z_{\text{vertex}})$$

- $|\Delta Z| < 2 \text{ cm for } p$
- $|\Delta Z| < 1$ cm for d, t
- DCA : distance of closest approach from beam spot (on r\u00f6 plane)
 - |DCA| < 1.5 cm for p
 - |DCA| < 0.5 cm for d, t

dE/dx

Mass distribution

 Mass is calculated from dE/dx and momentum (For dE/dx > 2.5)

Resolution

 $\Delta M/M \sim +11/-7 \%$

 \rightarrow Good separation

309 deuteron and 62 antideuteron candidate (Contributions from non-primary tracks are not subtracted yet)

No antitriton and 9 triton candidates (But consistent with BKG)

∆Z distributions

- Tracks are required to originate from interaction point in Z and rø
- ✓ ∆Z = Z_{trk} Z_{vertex}
 has clear peak
 for primary
 (plots after DCA
 cuts are shown)

Backgrounds are estimated using DCA to beam spot after ΔZ cut

> Clear peaks are from primary tracks (also from BKG, difficulty in estimation for d)

> Flat distribution in side band is from secondary (used to estimate backgrounds in the signal region)

Small events from back-scattered deuteron

Z_{vertex} distributions

- Clean DIS events with scattered electron
 - → Events are consistent with DIS
- Beam gas backgrounds are small enough for p, p and d

Event display of antideuteron

 $Q^2 = 45.5 \text{ GeV}^2$, $E_e = 14.2 \text{ GeV}$ antideuteron; P = 1.1 GeV/c, dE/dx(mips) = 2.7, $E_{CAL} = 3.2 \text{ GeV}$

DIS variables of antideuteron

- Similar Q² distribution with antiproton
- But lower x, higher y (lower E_e)

Are there any hints of production mechanism?

Ratio extraction

- We measure ratios, d/p, p/p
 - Ratios including d are not extracted due to difficulty in the non ep backgrounds estimation
- Yields extraction
 - $-0.3 < p_T/M < 0.7$ with 4 bin, |y| < 0.4
 - Yields are extracted from DCA distribution for each bin
 - p_T is normalized with mass to match the kinematic region between p and d
- Efficiency correction
 - Need to correct following:
 - Tracking efficiency ; Estimated from MC
 - eff. of dE/dx cut ; Estimated from MC and $\Lambda \rightarrow p \pi$ in Data
- Decay proton subtraction
 - Some protons from $\Lambda \rightarrow p\pi$ are not separated with DCA. Subtract contribution 21% by using Monte Carlo

Ratios

<mark>d/p</mark> ~ 5x10-4 – Agrees with H1 results in γp

 No asymmetry between proton and antiproton

Summary

- Antideuterons are observed in DIS for the first time
 - d/p ratio, ~ 5 x 10-4 is found to be similar between
 DIS (ZEUS) and Photoproduction (H1)
 - No asymmetry between proton and antiproton
 - Triton and antitriton are not observed
- Possible to provide new aspects on nuclear production from comparison with the heavy ion collisions