

Max Klein on behalf of H1

Cross Section Measurements Extractions of ${\rm F}_{\rm L}$ Studies and Simulations

Workshop on Deep Inelastic Scattering DIS 2006 Tsukuba/Japan 23.4.2006

 $d_{r} = F_{2} - \sqrt{2}F_{1}/\gamma^{+}$ 2 $Q^2 = 12 \text{ GeV}^2$ $Q^2 = 15 \text{ GeV}^2$ 2 $Q^2 = 20 \text{ GeV}^2$ $Q^2 = 25 \text{ GeV}^2$ 1.5 H1 Collaboration 0.5 2 $Q^2 = 35 \text{ GeV}^2$ 10⁻⁴ $10^{-3} \ 10^{-2} \ 10^{-1}$ Х 1.5 H1 96-97 BCDMS QCD Fit (H1) Turn over used 0.5 F_2 QCD _ _ _ _ _ for determination of F_{L} based on NLO QCD F₂ $10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$ \times

Reduced cross section low Q^2 - H1 preliminary data

Challenges and Remarks

$$\sigma_r = F_2 - y^2 / [1 + (1 - y)^2] \cdot F_L$$

Since y is usually small (0.001 - 0.9 for H1) and $F_L < F_2$, the longitudinal structure function is hard to access

Its contribution is sizeable only at large y > 0.6. At low Q², y is approximately given by $1-E_e'/E_e$, Thus it is required to identify the scattered electron in a large background of hadrons, mainly from photoproduction but also from deep inelastic scattering (high y is low x, i.e the HFS is scattered backwards.)

With fixed beam energies, the F_2 and F_L terms cannot be accurately disentangled. Approximately, one can extract F_L by assuming one knows F_2 , the reverse is always done when F_2 is extracted. H1 thus decided so far to extract F_2 for y < 0.6 and F_L for y > 0.6, and base QCD analyses on the reduced cross section σ_r .

Yet the values of F_L quoted depend on the NLO QCD fit [to the H1 data] at larger Q² or they exploit the y shape of the F_L cross section term and the simple rise of F_2 with decreasing x. In all cases one assumes F_2 to be known, or to be jointly determined with F_L , at lowest x where only the cross section is measured. Such methods could hardly be exploited in fixed target experiments due to the limited range in y and due to the more complicated behaviour of F_2 at larger x. Indirect methods remain to be not satisfactory.

A direct measurement unfolds both structure functions simultaneously. It determines F_L in the region of high y at the lower beam energy, i.e. not at the smallest x. Thus it cannot fully replace the indirect determinations. Those, however may be verified and if they are, we may obtain data on F_L over nearly one order of magnitude in x at low Q².

A direct measurement requires to vary the beam energy. Lowering the proton beam energy has been preferred in order to keep E_e' large for reaching a fixed high y, and for electron acceptance uniformity.

MRST CTEO 0.5 0.5 $Q^2 = 5 \text{ GeV}^2$ $Q^2 = 5 \text{ GeV}^2$ 0.4 0.4 0.3 0.3 gluons 0.2 0.2 quarks^{0.1} guarks^{0.1} 0 E 10 gluons 10 10^{-2} 10-2 10^{-1} 10^{-3} 10⁻¹ 10^{-3} х х CTEO MRST 0.5 0.5 r e F $Q^2 = 20 \text{ GeV}^2$ $Q^2 = 20 \text{ GeV}^2$ 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 E 10⁻⁴ 0 E 10 10^{-2} **10**⁻¹ 10^{-3} 10^{-3} 10^{-2} 10⁻¹ х х

Predictions for the longitudinal structure function

Figure 2. Calculation of the longitudinal structure function $F_L(x, Q^2)$ (solid lines) using the CTEQ6 (left) and the MRST2002 (right) parton distributions and Eq.2 for 4 flavours and α_s to NLO. Note that not only the predicted values for F_L differ but as well drastically the relative contributions from gluons (dashed dotted lines) and sea quarks (dashed lines). For MRST at low x, contrary to common belief, $F_L(x, Q^2)$ is not gluon dominated. Both sets of parton distributions describe the H1 data on F_2 well.

G. Altarelli and G. Martinelli, Phys.Lett. B76 (1978) 89. $_{\sf MK\,DIS2006}$

$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \cdot \left[\frac{16}{3}F_2 + 8\sum e_q^2 \left(1 - \frac{x}{z}\right) zg\right]$$

Hamburg, October 27th, 2005

H1-10/05-622

Running at Low Proton Beam Energies

H1 Collaboration

Expression of Interest submitted to the DESY Physics Research Committee, PRC 11/05

Abstract

The H1 Collaboration is interested in a run with reduced proton beam energy of about three months duration in order to measure the inclusive and the diffractive longitudinal structure functions at low x and Q^2 from data corresponding to an integrated luminosity of about 10 pb⁻¹. This run has been considered to be essential to complete the HERA ep programme, which is largely devoted to the understanding of a gluon dominated high density system of partons. It is proposed to be performed in the year 2007.

DIS event in H1

Kinematic Coverage

The low Q² acceptance limit is given by the high E_p , large theta cut - inner radius of SPACAL, ~173°. The large Q² acceptance limit is given by the low E_p , low theta cut - outer radius of SPACAL, ~ 155°. A shift of the vertex by +20 cm in + z direction for the high E_p run made acceptance more uniform.

large Q² study with e⁻ 05 data

R_cluster < 4cm - against hadrons, use ISR E-pz > 35 GeV - against radiative events BPC-Spacal match Trigger: E' > 3 GeV, CIP to [96% efficiency] CJC track, matched to Spacal (R > 40 cm) charge measured with CJC+event vertex --> statistical subtraction of background With e+ and e- data no symmetry assumption on the background is necessary (anti-p)

MK DIS2006

Further studies of systematics, e.g.

Systematic Uncertainties

Important are relative cross section accuracy and data/MC calibration

Requires very well controlled data taking and high efficiency of all components.

Correlated errors

- Energy of scattered electon : from 2% at 3 GeV to 0.2% at 30 GeV.
- Angle of scattered electron : 0.2 mrad in BST and 1 mrad at Θ_{e} < 165°.
- Residual photoproduction background (from a fit on negative tracks in positron run)
 0.267-0.8 y + 0.6 y² at y >0.65

Uncorrelated efficiencies:

electron identification, trigger, vertex, radiative corrections : 1%

Rosenbluth Representation of Cross Section

Binning crucial: used Q^2 , v=sy/2MChoice of 3rd energy value to divide f(y) linearly Thus 575 GeV if 460 GeV is chosen as lowest energy. At larger x all measurements are at low y (f(y)) and thus the sensitivity to F_L decreases rapidly. For full range a new precise measurement of F_2 results.

stat. errors only plotted

F_{L} - simulation for two energies

Error between 0.05 and 0.1, statistical and systematics about matched, At high y efficiency and yp background sources of uncertainty similar.

F_{L} - simulation for three energies

More than one low Ep? Depends on set-up time and further considerations, e.g. for diffraction statistics very crucial, x range extension modest, gain for systematics perhaps important - needs further study.

F_L - simulation for 3 energies and the published points

$$\frac{d^3 \sigma^{ep \to eXY}}{dx_{I\!P} \ d\beta \ dQ^2} = \frac{2\pi\alpha^2}{\beta Q^4} \cdot Y_+ \cdot \sigma_r^D(x_{I\!P}, x, Q^2)$$
$$\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D$$

Simulation of diffractive F_L^D Measurement with H1

Summary

 F_L may be measured by H1 in the range of 5-40 GeV^2 and low x, 10^{-4} - 4 10^{-3} , with an absolute accuracy of up to 0.05 which corresponds to about 5 sigma depending on F_L

 F_L^D may be measured at about 3 sigma, depending on F_L^D .

This programme requires an amount of about $10pb^{-1}$ of luminosity at low E_p , which is estimated to take 3 months of running time.

The feasibility of such a run depends on the HERA performance. The H1 Collaboration needs to about double the e^+ HERA I luminosity, i.e. to collect another 100 pb⁻¹ with e^+ in order to judge on the validity of the isolated lepton excess observed in positron-proton scattering. The restart of HERA after the shutdown has been promising.

The H1 Collaboration has submitted an expression of interest for this measurement to the DESY Physics Research Committee. A recommendation of the PRC is expected in May 2006.

Backup slides

At small and medium x, at the LHC xg is still uncertain to 10%, high x not settled either

$$xg(x) = 1.8\left[\frac{3\pi}{2\alpha_s}F_L(0.4x) - F_2(0.8x)\right] \simeq \frac{8.3}{\alpha_s}F_L(0.4x)$$

 F_L is a direct measure of xg and needs to be measured directly

MK DIS2006

Simulation of Cross Section Measurements

stat. errors only "plotted"

extend measurements to lowest y with

- Simulation of resonance region (SOPHIA)
- Low noise calorimetry (upgraded electr.)
- Forward tracking (upgraded FST, FTD)
- Maximum statistics desirable.

Error Estimates

ERRORS IN PERCENT, Q2 ~ 9.4 GEV2, PROTON BEAM ENERGIES 920 vs 460 GeV

<x></x>	0.00023	0.00026	0.00030	0.00040
<y> at 460 GeV</y>	0.835	0.728	0.628	0.483
<fl></fl>	0.303	0.293	0.283	0.266
STATISTICAL ERROR	7.0	9.9	13.1	15.8
SYST:	6.4	9.3	13.8	28.0
EFFICIENCIES				
SYST:	13.0	4.6	1.0	0.0
GAMMA-P				
SYST:	4.7	2.9	9.3	4.7
ELEC. ENERGY				
SYST:	6.2	0.3	3.2	7.5
ELEC. ANGLE				
SYST:	16.4	10.8	17.0	29.4
TOTAL				
SYST+STAT	17.9	14.6	21.4	33.4

Systematic Uncertainty of Diffractive Simulation

Uncertainties correlated between beam energies:

- $\delta E'_e = 0.2\%$ (kinematic peak) $\dots 2\%$ ($E'_e = 3~{
 m GeV}$)
- $\delta \theta'_e = 0.2 \text{ mrad}$
- Hadronic energy scale $\delta M_{X} = 4\%$ (as now)
- Photoproduction background $\delta\gamma p=25\%$ (as now)
- Proton dissociation corrections $\delta_{\rm pdiss}=6\%$ (as now, assumed 100% correlated)

Uncorrelated uncertainty = 2.4%, mainly from acceptance corrections with RAPGAP