EXPERIMENTAL RESULTS ON HEAVY QUARK FRAGMENTATION *

L. K. GLADILIN

Skobeltsyn Institute of Nuclear Physics, Moscow State University Vorob'evy Gory, Moscow, RU-119992, Russia E-mail: gladilin@sinp.msu.ru

Experimental results on c- and b-quark fragmentation are reviewed. The discussion is concentrated on measurements of heavy-quark fragmentation functions and fragmentation fractions. Measurements of various heavy-quark fragmentation ratios are also discussed. The experimental results are compared with theoretical expectations and model predictions.

1. Introduction

The initial stage of charm/bottom quark fragmentation can be described by perturbative QCD (pQCD) calculations ¹. A non-perturbative (NP) parameterisation is needed to describe the final heavy-quark transformation to a particular charmed or bottom hadron. Such parameterisation can include effects producing by the excited states decaying to a given hadron. The NP fragmentation parameterisation can be splited in two parts: fragmentation function and fragmentation fraction. Fragmentation functions are used to parameterise the transfer of the quark's energy to a given meson; they can be different for different pQCD calculations used to describe the initial fragmentation. Fragmentation fractions are the fractions of c/bquarks hadronising as a particular charmed/bottom hadron; they are expected to be universal for all pQCD calculations.

Measurements of the heavy quark fragmentation allow testing pQCD calculations and extracting fragmentation functions and fractions. A deeper phenomenological understanding of the heavy quark fragmentation can be obtained by measuring various heavy-quark fragmentation ratios. In partic-

^{*}Participation in DIS 2006 was supported by the local organising committee and grant 06-02-26609-z of the Russian Foundation for Basic Research.

 $\mathbf{2}$

ular, we will discuss the ratio of neutral and charged D/B meson production rates, $R_{u/d}$, the strangeness-suppression factor, γ_s , and the fraction of D/Bmesons produced in a vector state, P_v .

2. Bottom quark fragmentation

The *b*-quark fragmentation function was measured at LEP 2,3,4 and SLD ⁵. The measured spectra were compared with predictions of the leading-logarithmic (LL) JETSET 7.4 ⁶ Monte Carlo (MC) using different parametrisations for the fragmentation function. The best description of the data with a parametrisation with one free parameter was obtained using the parametrisation of Kartvelishvili et al. ⁷. The Bowler ⁸ and symmetric LUND ⁹ parametrisations with two free parameters provided a better data description. The Peterson ¹⁰ and Collins-Spiller ¹¹ parameterisations, and the HERWIG cluster model ¹² predictions were found to be too broad to describe the data. The *b*-quark fragmentation function measurements were also used for fitting the NP parametrisation with the next-to-leading-order (NLO) calculations ^{13,14}.

The *b*-quark fragmentation fractions were obtained by combining of all published LEP and CDF results on production of the weakly decaying *B* hadrons with measurements of the time-integrated mixing probabilities ^{15,16}. The isospin invariance, i.e. $R_{u/d} = 1$, was assumed in this procedure. Using the measured fragmentation fractions, the strangenesssuppression factor for bottom mesons is

$$\gamma_s = 2f(\bar{b} \to B_s^0) / [f(\bar{b} \to B^0) + f(\bar{b} \to B^+)] = 0.27 \pm 0.03.$$

Thus, bottom-strange meson production is suppressed by a factor ≈ 3.7 . The combined LEP value for the fraction of *B* mesons, produced in a vector state, is $P_{\rm v} = 0.75 \pm 0.04^{-16}$, that is in perfect agreement with the naive spin counting expectation (0.75).

3. Charm quark fragmentation

The *c*-quark fragmentation function has been recently measured with high precision by the CLEO 17 and BELLE 18 collaborations. The data comparison with the JETSET MC predictions revealed the same picture as for the *b*-quark fragmentation. The best description of the data was obtained using the Bowler parametrisation with two free parameters, and the parametrisation of Kartvelishvili et al. with one free parameter.

3

A discrepancy between the NP parametrisations obtained with the CLEO/BELLE data and earlier ALEPH measurement ¹⁹ has been observed using the NLO initial conditions, next-to-leading logarithmic (NLL) evolution, NLO coefficient functions and NLL Sudakov resummation ^{1,13}. The difference, which was attributed to the evolution between the $\Upsilon(4S)$ and Z^0 energies, results in an additional uncertainty in predictions for $D^{*\pm}$ hadroproduction of the order 20%. To reduce the uncertainty direct measurements of the charm fragmentation function at hadronic machines would be useful. Such measurements were already performed in *ep* interactions at HERA by the ZEUS ²⁰ and H1 ²¹ collaborations; their results were found to be in qualitative agreement with those obtained in e^+e^- annihilations.

Table 1. The fractions of c quarks hadronising as a particular charm hadron, $f(c \to D, \Lambda_c)$. The fractions are shown for the D^+ , D^0 , D_s^+ and Λ_c^+ charm ground states and for the D^{*+} state.

	ZEUS $(\gamma p)^{22}$	Combined e^+e^- data ²⁴	H1 (DIS) 23
	stat. syst. br.	stat. \oplus syst. br.	total
$f(c \to D^+)$	$0.217 \pm 0.014 \begin{array}{c} +0.013 + 0.014 \\ -0.005 - 0.016 \end{array}$	$0.226 \pm 0.010 \ ^{+0.016}_{-0.014}$	0.203 ± 0.026
$f(c \to D^0)$	$0.523 \pm 0.021 \begin{array}{c} +0.018 + 0.022 \\ -0.017 - 0.032 \end{array}$	$0.557 \pm 0.023 \ \substack{+0.014 \\ -0.013}$	0.560 ± 0.046
$f(c \to D_s^+)$	$0.095 \pm 0.008 \ {}^{+0.005 \ +0.026}_{-0.005 \ -0.017}$	$0.101 \ \pm 0.009 \ \ {}^{+0.034}_{-0.020}$	0.151 ± 0.055
$f(c \to \Lambda_c^+)$	$0.144 \pm 0.022 \begin{array}{c} +0.013 + 0.037 \\ -0.022 - 0.025 \end{array}$	$0.076 \pm 0.007 \stackrel{+0.027}{_{-0.016}}$	
$f(c \to D^{*+})$	$0.200 \pm 0.009 \begin{array}{c} +0.008 + 0.008 \\ -0.006 - 0.012 \end{array}$	$0.238 \pm 0.007 \ ^{+0.003}_{-0.003}$	0.263 ± 0.032

Table 1 compares the *c*-quark fragmentation fractions measured in *ep* interactions at HERA by the ZEUS ²² and H1 ²³ collaborations with those obtained in e^+e^- annihilations. The latter values were compiled previously ²⁴ and updated with the recent branching ratio values ¹⁶. The measurements performed in e^+e^- and *ep* interactions are consistent. Measurements of the $R_{u/d}$ value in charm fragmentaion confirmed isospin invariance ^{22,23,24,25}. Measurements of the strangeness-suppression factor in charm fragmentation showed that charmed-strange meson production is suppressed by a factor ≈ 3.9 (similar to the suppression in bottom fragmentation). The fraction of charged *D* mesons produced in a vector state, P_v^d , was found to be $\approx 0.6^{22,23,24,25}$ in both e^+e^- and *ep* interactions. The value is significantly smaller than that obtained in bottom fragmentation and does not agree with the naive spin counting expectation (0.75).

4. Summary

The *b*-qaurk fragmentation function and fractions were measured in $e^+e^$ annihilations, while the *c*-quark fragmentation was studied in both e^+e^- and 4

ep interactions. Comparison of the charm fragmentation characteristics, obtained in e^+e^- and ep interactions, generally supports the hypothesis that fragmentation proceeds independently of the hard sub-process.

The fraction of charged D mesons produced in a vector state, P_v^d , in charm fragmentation was found to be ≈ 0.6 in both e^+e^- and ep interactions. The value is significantly smaller than that obtained in bottom fragmentation and does not agree with the naive spin counting expectation (0.75).

References

- 1. C. Oleari, these proceedings.
- 2. A. Heister et al., ALEPH Collab., Phys. Lett. B512, 30 (2001).
- 3. G. Abbiendi et al., OPAL Collab., Eur. Phys. J. C29, 463 (2003).
- DELPHI Collab., Abstract 583, International Conference on High Energy Physics, Amsterdam, The Netherlands (ICHEP 2002), July 2002; http://delphiwww.cern.ch/pubxx/conferences/amsterdam02/.
- 5. K. Abe et al., SLD Collab., Phys. Rev. D65, 092006 (2002).
- 6. T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).
- 7. V.G Kartvelishvili, A.K. Likhoded, V.A. Petrov, Phys. Lett. B78, 615 (1978).
- 8. M.G. Bowler, Z. Phys. C11 169 (1981).
- 9. B. Anderson, G. Gustafson, B. Södeberger, Z. Phys. C20 317 (1983).
- 10. C. Peterson et al., Phys. Rev. D27 105 (1983).
- 11. P.D.B. Collins, T.P. Spiller, J. Phys. G11 1289 (1985).
- 12. G. Marchesini et al., Comp. Phys. Comm. 67, 465 (1992).
- 13. M. Cacciari, P. Nason, C. Oleari, JHEP 0604, 006 (2006).
- 14. J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D58, 034016 (1998).
- 15. Heavy Flavour Averaging Group (HFAG), http://www.slac.stanford.edu/xorg/hfag/osc/.
- 16. S. Eidelman et al., Phys. Lett. B592, 1 (2004).
- 17. M. Artuso et al., CLEO Collab., Phys. Rev. D70, 112001 (2004).
- 18. R. Seuster et al., BELLE Collab., Phys. Rev. D73, 032002 (2006).
- 19. R. Barate et al., ALEPH Collab., Eur. Phys. J. C16, 597 (2000).
- ZEUS Collab., Abstract 778, International Conference on High Energy Physics, Amsterdam, The Netherlands (ICHEP 2002), July 2002; http://www-zeus.desv.de/physics/phch/conf/amsterdam paper.html.
- H1 Collab., Abstract 649, International Europhysics Conference on High Energy Physics, Lisbon, Portugal (HEP 2005), July 2005; http://www-h1.desy.de/h1/www/publications/conf/list.EPS2005.html.
- 22. S. Chekanov et al., ZEUS Collab., Eur. Phys. J. C44 (2005) 351.
- 23. A. Aktas et al., H1 Collab., Eur. Phys. J. C38 (2005) 447.
- 24. L. Gladilin, Preprint hep-ex/9912064, 1999.
- ZEUS Collab., Abstract 351, International Europhysics Conference on High Energy Physics, Lisbon, Portugal (HEP 2005), July 2005; http://www-zeus.desy.de/physics/phch/conf/lp05_eps05/.