Searches for excited neutrinos with H1 at HERA

Cristinel DIACONU

Centre de Physique des Particules de Marseille

Excited states

- If found, direct proof of compositness:
 - "Trivial", "historical", "non-innovative" approach to BSM
- Excited fermions F* with magnetic transition to ground state

$$\mathcal{L}_{\text{eff}} = \sum_{V=\gamma, Z, W^{\pm}} \frac{e}{\Lambda} \bar{F^*} \sigma^{\mu\nu} (C_{VF^*F} - D_{VF^*F} \gamma_5) F \partial_{\mu} V_{\nu} + h.c.$$

From g-2 and no EDM: |C|=|D| (and real)

F.M. Renard, Phys.Lett.B116:264,1982

F^{*} organized in iso-doublets $(e^*v^*)_{L,R}$ => interaction lagrangian:

 $\mathcal{L}_{int} = \frac{1}{2\Lambda} \bar{F}_R^* \sigma^{\mu\nu} [g f \frac{\tau^a}{2} W_{\mu\nu}^a + g' f' \frac{Y}{2} B_{\mu\nu} + g_s f_s \frac{\lambda^a}{2} G_{\mu\nu}^a] F_L$

Hagiwara et al, ZPC 29 (1985) 115.

F*

Compositness scale Λ , internal dynamics stored in f,f',f couplings ۲

> Another approach: contact interactions (suppose common constituents) $\mathcal{L} \alpha = \frac{4\pi}{\sqrt{2}} (e^{-\frac{1}{2}} \gamma^{\mu} e) (\overline{q} \gamma_{\mu} q)$ Baur et al.PRD 42(1990) 815

same pheonomenology, different normalisation

The VFF* couplings

• γ**FF***vertex: • ZFF* vertex: WFF* vertex: $\mathbf{C}_{\mathbf{ZFF}^{\star}} = \frac{1}{2} (f I_3 \cot \theta_W - f' \frac{Y}{2} \tan \theta_W)$ $\frac{1}{2}(fI_3 + f'\frac{1}{2})$ WFF* • I₃: third component of isospin $C_{\gamma
u
u st}$ $\frac{1}{4}(f - f') = 0|_{f = f'}$ $-\frac{1}{4}(f + f') = 0|_{f = -f'}$ • Y: hypercharge • θ_{w} : Weinberg angle

Photons couple to $\nu\nu^*$ if $f \neq f'$, maximal if f = -f'

Excited neutrino states can be excited from charged leptons via charged currents (if $f \neq 0$) or produced in association with anti-neutrinos from γ/Z

Search for v* at colliders

Signature: neutral lepton-boson resonance

- HERA: Produced in CC-like interactions
 - Extra jets in the events, besides v^* decay products
 - Cross section much larger in e- p (O(10²)) due to favourable valence u-quarks and helicity enhancement (CC-like)

$$\sigma^{e^{\pm}p}_{CC} \sim Y_{+}({d \atop u}) \mp Y_{-}({d \atop u}) \qquad Y_{\pm} = 1 \pm (1-y)^{2}$$

- LEP: similar production mechanism, larger cross sections and generally smaller background
- Tevatron: photon or jets with missing P_T
 - final state already investigated (LED, SUSY)
 - v* analysis not yet done

Searches for v* at HERA

- Large data sample in e- p mode collected at present
 - factor 8 more than the publication
- New preliminary result: H1 Search for v* using L(e⁻p)=114 pb⁻¹

The decays and their signatures

Decay	Signature	Main SM Background
$\nu \rightarrow \nu \gamma$	Photon+P _T ^{miss}	Radiative CC
$\nu \rightarrow eW (W \rightarrow jets)$	e+multijet	NC (multijet)
$\nu \rightarrow \nu Z$ (Z $\rightarrow jets$)	P _t ^{miss} +multijet	CC (multijet)

(leptonic decays of W/Z not considered at present)

<u>Search for</u> v*→vγ

- $P_T^{Miss} > 15 \text{ GeV}, P_t^{jet} > 5 \text{ GeV}$
- isolated photon
- reduce CC:
 - Pt photon >20 GeV
 - extra kin. cuts E-P_z>45 for P_t^{γ}<50 GeV

Main background: radiative CC DIS

Search for v* multi-jet decays

Results

H1 Preliminary 114 pb^{-1} (2005)						efficiency
Selection	Data	SM	CC-DIS	NC-DIS	γp	M _v 100-260 GeV
$\nu^* \rightarrow eW_{\rightarrow qq}$	136	118 ± 22	: <u></u> ;	112 ± 21	4.4 ± 1.2	20-45%
$\nu^* \rightarrow \nu Z_{\rightarrow qq}$	88	81 ± 15	54 ± 13	5 ± 1.6	22 ± 5	20-35%
$\nu^* \rightarrow \nu \gamma$	12	11.6 ± 2.5	9.1 ± 2.4	1.3 ± 0.3	0.4 ± 0.15	~50%

No significant deviation from the SM prediction => exclusion regions $(f/\Lambda, M_{v^*})$

New domains explored

 v^* has negligible width close to the sensitivity border

If f=-f' (maximal coupling to the photon) and $f/\Lambda = 1/M_{\nu*}$ $M_{\nu*} < 188 GeV$ excluded @ 95% C.L.

Status of other f* searches

e*: HERA have an unique sensitivity up to M(e*)=300 GeV and $f/\Lambda \sim 10^{-3}$ (GeV⁻¹⁾

q*: dominated by Tevatron, if strong sector also "excitable" ($f_s>0$) HERA sensitive if $f_s <<1$; large increase in luminosity expected Other excited fermions could be produced in pairs at Tevatron (D0: Mµ*>680 GeV, Λ =1TeV, CI formalism)

Conclusions

• Search for excited neutrino has been performed using HERA II data

- L(e⁻p)=114 pb⁻¹

- A new domain explored, but no positive signal found
- Neutrino masses up to 260 GeV (f/ Λ =1.10⁻²) excluded in the present analysis; for f/ Λ =1/M_{v*} M_{v*}>188 GeV @ 95% CL
- significant increase in analysed data sample expected
 - L^{HERAtotal}(e⁻p)~factor 2 w.r.t. present analysis (v*)
 - L^{HERAtotal} ~= factor 4-5 w.r.t. HERA I (e*, q*)

Search for lepton-boson resonances will continue at HERA!