Quark Confinement and the Hadron Spectrum VII Ponta Delgada, September 2nd-7th, 2006

Particle Production and Spectroscopy in ep-Collisions

Karin Daum - Wuppertal on behalf of the H1 and ZEUS collaborations

Outline:

- HERA & kinematics at HERA
- Charged particle production
- Strange particle production
- · Charm fragmentation
- Search for exotic baryons

ent06. Ponta

Conclusions

Lagoa do Fogo

ZEUS

The HERA accelerator

DESY Hamburg Germany

Karin Daum

HERA kinematics

 $\sigma^{h} = PDF \otimes M.E. \otimes$

Ee = 27.6 GeV Ep = 920 (820)GeV

ep-Kinematics:

- $\int s = 300-318 \text{ GeV}$ (energy c.m.)
- $Q^2 = -q^2$ (photon virtuality)
- x=x_{BJ} (fraction of proton momentum carried by the struck quark)

Fragmentation process:

(fraction of quark momentum carried by the hadron)

(energy scale of the quark)

ConfinementO6, Ponta Delgada, Sep., 2nd 2006

FF

Xp

μ

Models for ep scattering

ARIADNE

Color dipol model (CDM)

String fragmentation

(Fragmentation parameters tuned to e^+e^-)

Karin Daum

Charged particle fragmentation function

H1 preliminary

Inclusive fragmentation function: No distinction between π^{\pm} , K[±], p

Restricted to 100<Q²<10000 GeV² ⇒Suppresses HO QCD effects not present in e⁺e⁻ (e.g. boson-gluon-fusion, ISR)

Use a reference frame closest to situation in e+e-: (Breit-Frame)

⇒Energy scales: ep-collisions: e⁺e⁻-annihilation:

μ=**Q/2** μ=√s/2=E_{beam}

 $[\]mu(ep)=Q/2, \ \mu(e^+e^-)=\sqrt{s/2}$

Charged particle fragmentation function •H1 preliminary (DIS)

Karin Daum

Strange particle production

Due to the s-quark mass m_s fragmentation into K_s^0 , Λ is suppressed w.r.t. π , p

 \Rightarrow Strangeness suppression factor γ_{s}

ZEUS preliminary

Different regimes is ep-kinematic:

- 1. DIS: $Q^2 > 25 \text{ GeV}^2$
- 2. DIS: $5 < Q^2 < 25 \text{ GeV}^2$

 3. γp: Q²≈0, 2 jets, E^{jet}_T > 5 GeV
γ acts as a quasi-real target
⇒ may get internal structure (resolves into partons)

Distinction of direct γ from resolved γ via observable x_{γ} calculated from the two jets: $x_{\gamma} \approx 1 \Rightarrow \text{direct } \gamma$ $x_{\gamma} \ll 1 \Rightarrow \text{resolved } \gamma$

ARIADNE $\gamma_s=0.3$ (CDM) overall reasonable - but shapes not so good ARIADNE $\gamma_s=0.22$ systematically too small (from previous result) ALEPTO $\gamma_s=0.3$ (PS) fails \Rightarrow a single parameter γ_s possibly not sufficient to describe the data

Karin Daum

Strange particle production

Karin Daum

Strange baryon-to-meson ratio

Charm fragmentation fractions & function

Fragmentation fractions:

H1 (DIS) 2<Q²<100 GeV² using silicon vertex detector

ZEUS (yp)

ZEUS (DIS) 1.5<Q²<1000 GeV² preliminary

D* fragmentation function:

H1 (DIS) 2<Q²<100 GeV² preliminary

ZEUS (γp) E^{jet}>9 GeV preliminary

Caveat:

Different definitions of fragmentation variable are used also in e^+e^-

Karin Daum

Charm fragmentation fractions

Within experimental precision: Charm fragmentation fractions independent of hard subprocess ⇒ consistent with universality of charm fragmentation fractions

Karin Daum

Charm fragmentation ratios from D's

Karin Daum

D* fragmentation function in ep and e⁺e⁻

Qualitative agreement

*) different definitions of z

Search for exotic baryons - $\Theta^{+}(1540)$

Karin Daum

Search for exotic baryons - O⁺(1540)

H1:

Limits in bins of Q^2 for $K^0_{,p}$ and $K^0_{,p}$ separately

Search for exotic baryons – Ξ^{-}

Search for exotic charmed baryon

A possible charmed analogue of Θ^+ could decay to $D^{*-}p$ (+c.c.)

H1: DIS 1<Q²<100 GeV² Signal of 51 events observed @ M(D*p)=3099 MeV

Background fluctuation probability: $4*10^{-8}$ (Poisson) $\rightarrow 5.4\sigma$ (Gauss) Signal also present in γp

Acceptance corrected ratio:

$$R_{cor}(D^{*}p/D^{*}) = 1.59 \pm 0.33^{+0.33}_{-0.45}$$
%

ZEUS: DIS Q² >1 GeV² and γp No signals observed

Acceptance corrected upper limit: R^{cor}(D*p/D*) <0.59% @95% C.L. (DIS)

• Charged particle fragmentation function in ep collisions

- shows significant scaling violations
- agrees generally with eter annihilation data
- cluster model fails to describe scaling violations

• Strange particle production in ep collisions

- is reasonably described in DIS with γ_s =0.3 (LEP tuning)
- model fails to describe $(\Lambda + \Lambda)/K_s^0$ ratio in resolved γp
- consistent $(\Lambda + \Lambda)/K_{s}^{0}$ ratios in DIS, direct γp and $e^{+}e^{-}$

Charmed particle production

- fragmentation fractions, ratios & function are process independent (consistent with universality)
- Searches for exotic baryons in ep collisions:
 - the situation is mixed final HERA statistic needed (x4)

Sunset at Agua de Pau

Karin Daum

ConfinementO6, Ponta Delgada, Sep., 2nd 2006

20

Backup Slides

Ratio of $K_{s}^{0}/(\pi^{\pm}+K^{\pm}+p+\overline{p})$

 K^{0}_{s} and Λ production cross sections in DIS are best described by ARIADNE using γ_{s} =0.3 (LEP-tuning) However:

ratio $K_{s}^{0}/(\pi^{\pm}+K^{\pm}+p+\overline{p})$ prefers $\gamma s \le 0.22$

Possible explanation of excess at $x_{\gamma} << 1$

Fireball:

- \Rightarrow isotropic energy distribution
- $\Rightarrow \mathsf{E}_{\mathsf{T}}^{\mathsf{jets}} \checkmark \mathbf{\Sigma} |\mathsf{E}_{\mathsf{T}}|$
- ⇒ select fireball enriched sample: $E_{T}^{jets}/\Sigma|E_{T}| < 0.3$

fireball depleted sample: $E_T^{jets}/\Sigma |E_T| > 0.3$

⇒ fireball depleted sample: model expectation closer to data

