Heavy Quark Production in ep Collisions at HERA

I. Bloch, DESY Hamburg / Hamburg University

9th Conference on the Intersection of Particle and Nuclear Physics May 30th - June 03rd 2006 High Energy Hadron Physics

• Introduction & Theory

- Results:
 - → Charm
 - → Beauty
 - → Inclusive F, cc/bb
- Summary & Outlook

Heavy Quarks at HERA

ZEUS

HERA: ep collisions within H1 & ZEUS

HERA: ep collisions within H1 & ZEUS

Heavy Quark Production in ep collisions

Dominant process in ep collisions: **Boson-Gluon-Fusion**

Multiple scales:
 $\mathbf{m}_{c/b} \sim 1.5 / 5 \text{ GeV}$ $\mathbf{p}_{T, c/b} \sim$ typically few to 50 GeV $\mathbf{Q}^2 \leq 1 \text{ GeV}^2$ Photoproduction (γp)
 $\gtrsim 1 \text{ GeV}^2$ Deep inelastic
scattering (DIS)

NLO calculations with different schemes depend on dominant scale:

• "massive scheme" FFNS:

$$Q^2$$
, $p_{T, c/b}^2 \approx m_{c/b}^2$

• "massless scheme" ZM-VFNS:

$$Q^2, p_{T, c/b}^2 \gg m_{c/b}^2$$

• combined massive⊗massless: VFNS

Charm production, D* tag

Tag Charm via:

• exclusive final hadronic decay here $c \rightarrow D^*X \rightarrow D^0\pi_s X \rightarrow (K\pi)\pi_s X$

or

• impact parameter (later)

Clean signal tag with large statistics.

Charm production, D* tag

Data described by NLO QCD over 5 orders of magnitude.

Charm production, D*+jet(s) - higher order events

Heavy Quarks at HERA 8

Heavy Quarks at HERA 10

$b \rightarrow D^* \mu$ and $b \rightarrow \mu \mu$ measurements: sensitive to low p_T^{b}

At low p_T - same trend: Massive **NLO underestimates data**, ZEUS: NLO compatible within errors.

I. Bloch, DESY/Hamburg University - CIPANP, Puerto Rico 30.5.-03.06.'06

Heavy Quarks at HERA 11

Trend at forward η and low $p_{_{\rm T}}$?

Low p_{T}^{b} b->dimuon cross sections:

No evidence for trend at low $p_{_{\rm T}}$ and forward η to continue.

Beauty and Charm - δ +jets (High p_T , γp)

Inclusive final state, simultaneous determination of Beauty and Charm.

$F_2^{q\bar{q}}$ in DIS at low and high Q² - Charm

$F_2^{q\bar{q}}$ in DIS at low and high Q² - Beauty

15

b

Н

Beauty with μ +jet, HERA II

- Preliminary Beauty p_t^{rel} (+ δ) results:
 - small fraction of HERA II data
 - jet+muon: p_t^{rel} as well as $p_t^{rel} + \delta$

• Outlook:

Improve by ~ order of magnitude. New double differential measurements possible, as well as extraction of $F_2^{b\overline{b}}$

Summary

- H1 and ZEUS heavy flavour measurements agree
- Beauty and Charm data in general agreement with NLO
- Beauty data partially slightly higher
- inclusive γp impact parameter measurements in good agreement with NLO prediction
- Beauty and Charm contribution to proton structure $F_2^{cc/bb}$ measured
 - well described by NLO

Outlook

• HERA II is running smoothly

- already accumulated more data than during HERA I

- upgraded detectors performing well
- expect higher precision results.

Backup: Data - NLO ratio

This is just a rough comparison. Q^2 is not the driving scale in the whole range!

Main caveats:

- NLO has been extrapolated to hadron level using different approaches
- NLO has been calculated for different sets of scales and parameters, same for the uncertainty
- Cross section definitions and kinematic ranges somewhat different