

Heavy Flavour Production at HERA

- Introduction
- Charm production
- Beauty production
- Heavy Flavour structure functions

Christoph Grab ETH Zurich

The HERA Collider

Christoph Grab, ETHZ

Heavy Flavour Production at HERA

Beach 06 July 2006

2

Heavy Flavour Production at HERA

> Dominant production is Boson-gluon fusion : direct $\gamma g \rightarrow QQ$, driven by gluons in proton

+ resolved contributions ...

"c/b-excitation"

Different scales involved, to make α_s small:

- $Q^2 > 1$ GeV²: Deep Inelastic Scattering(DIS) $\leftrightarrow Q^2 < 1$ GeV² : Photoproduction (γP)
- M_b , $M_c \sim 5$, 1.5 GeV and E_T , $p_T \sim few \text{ GeV}$

Powerful test of pQCD:

massive vs massless schemes? is NLO enough? intrinsic k_t of gluon ? ...

Investigate g-density in proton and hadronic components of photon.

Charm Production

Charm Tagging via D* Production

• Q² evolution measured and described well by NLO QCD over 4 orders of magnitude

ZEUS preliminary 04-024. ZEUS, PR **D69** (2004) 012004.

Charm with Jets in Photoproduction

- H1: Events with a reconstructed D* + 2nd jet in photoproduction
- *p*_t spectra of both D* and jet well described by NLO QCD [PL B348(1995) 63]
 H1prelim-05-073

Dijets with Charm in yp: Testing NLO QCD

Test limitations of fixed order pQCD

 LO: Quarks are back-to-back: Δφ=180°

Christoph Grab, ETHZ

- NLO: additional gluons show up at $\Delta \phi < \pi$
- $\Delta \phi(jj)$ and $p_T^2(jj)$ show large deviation from NLO at high $p_T^2(jj)$ and small $\Delta \phi(jj)$

a)

- \rightarrow regions sensitiv to higher order effects.
- Good agreement of NLO with data, except where HO are enhanced : NNLO, ... needed

ZEUS, Nucl. Phys. **B729** (2005) 492.

Ď2

Beauty Production Results

Selection of results, ordered according to tagging methods, which correspond also to different scales

Beauty Tagging with muon and jets

medium $p_t \rightarrow$ medium scale

Christoph Grab, ETHZ

Heavy Flavour Production at HERA

Beauty Tagging

- Exploit the muons from semileptonic decays to separate charm and beauty.
- fit pt^{rel} (large B mass) and/or impact parameter δ (large B-lifetime) distributions; extract c,b-fractions using MC-shapes; b-fractions ~ 30%

10

Tagging uses Silicon Trackers

H1 Central Silicon Tracker CST:

- > Two layers, cylindrical (Hera-I)
- > double sided strips
- » DCA-resolution= 33 +90/pt [µm /GeV]

ZEUS Barrel Microvertex Detector MVD:

- 3 layers, double sided strips,
- 65 cm length, covering 30 150°
- Beam spot size : 110 x 30 mm2.

Beauty Tag μ +2j: (δ , p_t^{rel}) in γp

General agreement between H1 and ZEUS

• NLO (FMNR): shape close, agrees within errors

• H1: NLO tendency to be low at low p_t^{μ}

Beauty Tag (δ , p_t^{rel}): ZEUS @HERA-II with MVD

ZEUS: Q²<1 GeV², 0.2<y<0.8; $p_t^{jet} > 7,6 \text{ GeV}, |\eta_{jet}| < 2.5; p_t^{\mu} > 2.5 \text{ GeV}, -1.6 < \eta_{\mu} < 2.3$

- First ZEUS HERA-II results with new MVD
- for 33 pb⁻¹ from a 2-D fit (δ,p_t^{rel}) of events with muon + 2 jets yield:

 $f_b = (16.7 \pm 2.6)\%$ $f_c = (52 \pm 10)\%$

- pQCD NLO (FMNR) including had. corrections describes data well
- agrees with previous measurements (used p_t^{rel})

Beauty tagging using inclusive lifetime 2 jets, NO muon

High $p_t \rightarrow$ large scale

Heavy Flavour Production at HERA

H1: Inclusive b-lifetime Tag, 2 jets in yp

Fit subtracted impact parameter significances $S_i = \delta_i / \sigma(\delta_i)$, using MC shapes and measure c + b simultanously

• General message : NLO/LO QCD somewhat below data, mainly at low p_t , low x_{γ}^{obs} (resolved region) and forward η (not shown).

 $x_{\gamma} = \frac{\sum_{j \neq 1, j \neq 2} (E - P_z)}{\sum (E - P_j)}$

Double tagging using D*-muon or muon-muon correlations

Low $p_t \rightarrow small scale$

Heavy Flavour Production at HERA

Double Tagging

Tag BOTH b quarks by either a

- $D^* \rightarrow (K\pi) \pi$ and/or muon from semileptonic decay
- A) $D^* \mu$: H1, ZEUS : Correlate charges and azimuthal angular separation $\Delta \phi(D^*-\mu)$
- B) $\mu\mu$: ZEUS (prel) : Correlate charges and M_{inv} ($\mu\mu$)
- → Obtain σ by fitting b,c,uds- fractions in 4 correlation regions
- ☺ Large phase-space for b:
- No jets required: reach lower $p_t(b)$
- large μ -acceptance in η of ZEUS

μμ Correlations – a ZEUS Event

Two muon event measured with ZEUS detector

$\mu\mu$ correlations in γp : ZEUS Results

(For differential σ : harder cuts on μ : $p_T > (\mu) > 1.5$ GeV, -2.2< $\eta(\mu) < 2.5$)

Heavy Flavour Production at HERA

H1&ZEUS: D*µ and µµ vs NLO

• Comparison cross sections: $D^*+\mu$: H1 and ZEUS are compatible

- Comparisons data/NLO : at visible level and b quark consistent.
- NLO: normalisation still tends to be below data in ALL cases !

Heavy Quark Structure Functions

Beauty Structure Function: F₂^{bb} (x,Q²)

$$F_2^{b\overline{b}}(x,Q^2) \sim \frac{d^2 \sigma^{ep \to b\overline{b}x}}{dx \cdot dQ^2} \cdot Q^4 x$$

- > First measurement of $\mathbf{F}_2^{\mathbf{bb}}$ vs \mathbf{Q}^2
- Large scaling violations observed, increasing with decreasing x (like F₂)
- pQCD describes data well in general
- > BUT: data precision exceeds spread of QCD predictions
- First NNLO calculation available! (Thorne hep-ph/0506251)

Beach 06

July 2006

22

Summary Charm F₂^{cc} from HERA-I

• NLO QCD fit with gluon from inclusive DIS fits well

ZEUS, PR **D69**(2000)012004. H1, EPJ **C40** (2005) 349. H1, EPJ **C45** (2006) 23.

• At low Q^2 : Slight deviations visible

Christoph Grab, ETHZ

Overall Comparison with Theoretical Predictions

B-Production Cross Section Ratio : Data / NLO

• Comparison with pQCD NLO: **FMNR(γp) + HVQDIS (DIS)**

- All ratios consistent with 1.5; General trend: NLO tends to be below data.
- Theory errors not shown

Improvements in theory needed and start to appear on the horizon:

- ✤ MC@NLO is under way
- NNLO calculations coming
- Calculations including gluon k_t

Summary

- <u>Charm production</u>: H1 and ZEUS data agree
 - High precision data reasonable well described by NLO predictions; :
 Need for NNLO / NLO+PS in certain regions of phase space
- <u>Beauty production</u> : H1 and ZEUS data agree
 - NLO predictions do reasonably well; tendency to be below data
 - Differential shapes deviate only in a few regions (low pt, forward η, low x_γ), seen in different measurements.
 - Double tags $(D^*-\mu, \mu-\mu)$ allow access to lower p_t and lower E_{cms}
- <u>Structure Functions (F₂^{QQ})</u>
 - both charm and beauty (first measurement) pretty well described by NLO QCD; c+b contribute a significant fraction to the overall !

With HERA-II performing well, we hope to obtain similar precision in b as we have in charm ...