RPV SUSY searches at HERA

Nichol Brümmer
Ohio State University
on behalf of the
ZEUS and H1 Collaborations
Contents

• HERA II e±p collider, now polarized: 25-40%
• R-Parity violation leads to production of Squarks, Gauginos subsequent decay also through other channels
• ZEUS: light stop decaying to chargino
• H1: light stop decaying to sbottom
• H1, ZEUS: GMSB Neutralino decaying to photon + Gravitino
• ZEUS: Neutralino or Chargino with RPV decay
• H1: more general squark search
• Conclusion, outlook
HERA I/II Data ‘on tape’

HERA I and HERA II

H1 integrated luminosity
Summer 2005

unpolarized electrons
left and right–handed positrons
unpolarized positrons
left and right–handed electrons

HERA II
- 2001 upgrade
- 2002+2003 struggling
- 2004+2005 good!
- Polarized e^\pm!
- e^+p: 0.7/0.35 \times Hera I
- e^-p: 4.5 \times HERA I !!!!

Status Analyses:
- HERA I data only..
- H1 published in 2004
- ZEUS preliminary
RPV Production: squark or gaugino

R-parity violation:
\[\lambda'_{ijk} \cdot \left(-\tilde{e}^i_L u^j_L \tilde{d}^k_R + e^i_L \tilde{u}^j_L \tilde{d}^k_R - (\tilde{e}^i_L)^c u^j_L \tilde{d}^k_R \right) \]

\[\lambda'_{ijk} L^i_L Q^j_L \tilde{D}^k_R = \]
\[-\tilde{\nu}^i_L d^j_L \tilde{d}^k_R - v^i_L \tilde{d}^j_L \tilde{d}^k_R - (\tilde{\nu}^i_L)^c u^j_L \tilde{d}^k_R \] + c.c.

• valence \(u, d \) in proton dominate, \(u \geq 2 \cdot d \) at high \(x_{BJ} \)
• s-channel single squark production, like a leptoquark
 \(\sqrt{\lambda'_{11k}} : e^- + u \rightarrow \tilde{d}^k_R \)
 \(\sqrt{\lambda'_{1j1}} : e^+ + d \rightarrow \tilde{u}^j_L \)
• assume only one \(\lambda'_{ijk} > 0 \)

\(\tilde{t} \)-channel slepton exchange
⇒ gaugino production
✓ slepton masses low?
Gauginos decays

- Heavy gaugino cascades down to lighter χ_1^0
 - $\chi^+ \rightarrow W^+ \chi_1^0$
 - $\chi_2^0 \rightarrow e^+ \bar{\tilde{e}}^-, \bar{\tilde{e}}^- \rightarrow e^- \chi_1^0$
 - ... depends strongly on mass spectrum ...

- RPV 3-body decay through virtual slepton or squark
 - $\chi_1^0 \rightarrow e^+ \bar{\tilde{e}}^-, \bar{\tilde{e}}^- \rightarrow \bar{u}d^k$
 - $\chi_1^0 \rightarrow \bar{u}\tilde{u}, \tilde{u} \rightarrow e^+ d^k$
 - ...

- Alternative: Gauge Mediated Susy Breaking with Gravitino LSP, low mass, invisible
 - $\chi_1^0 \rightarrow \tilde{G}\gamma$
 - Signature: photon + missing P_t
Squark decays

• Direct RPV decay: like leptoquark
 ✓ B.R. large for massive gaugino and large \(\lambda' \)
 ✓ \(\Rightarrow \) Contribute to limit at highest squark mass
 ✓ Final state like SM NC or CC DIS
 ✓ Invariant mass peak
 ✓ Angular distributions differ

• MSSM Gauge decays
 ✓ 1 or 2-step cascade to ever lighter gluino, chargino, neutralino
 e.g. \(\tilde{u}_L^j \rightarrow \chi_2^0 \tilde{u}_L^j, \chi_2^0 \rightarrow Z \chi_1^0 \)
 ✓ RPV 3-body decay through virtual slepton or squark:
 e.g. \(\chi_1^0 \rightarrow e^+ \tilde{e}^-, \tilde{e}^- \rightarrow \bar{u}d^k \)
 ✓ Final state differs from SM NC or CC DIS:
 1. One or more leptons, neutrinos (missing \(P_t \))
 2. Electron from neutralino can have wrong sign (majorana fermion)
 3. Multiple high-E\(t \) jets, high circularity
 4. Invariant mass peak
ZEUS: light stop decay via chargino

- Heavy \tilde{b} and \tilde{g}
- Direct RPV decay $\tilde{t} \rightarrow e^+ d$
- Decay via chargino + beauty
- Ignore $\tilde{t} \rightarrow t\chi_1^0, t\tilde{g}, \tilde{b}W^+$ final states
- Final state like NC or CC DIS, jets

χ_1^+

W^+

f'

ν_e

t_1

b

\tilde{t}_1

\tilde{b}

e^+

d

g

$t \chi_1^0, t \tilde{g}, \tilde{b}W^+$

$100 \text{ GeV} < M_1 < 300 \text{ GeV}$

$-300 \text{ GeV} < \mu < 300 \text{ GeV}$

$tan\beta = 6$

$M_1 = M_2 = M_3$ at GUT scale, sfermion masses free

20 July 2005

Nichol Brümmer, SUSY-2005, Durham
H1: stop decay to sbottom + W

- \(m_{\tilde{b}_1} + m_W < m_{\tilde{t}_1} < m_{\chi^+} + m_b, m_{\chi^0} + m_t \)

- Cannot explain H1 excess events with lepton + \(P_{t,\text{miss}} + \) jet

- Limits given for this decay and direct RPV 'leptoquark'-decay only.

\[
\begin{align*}
\ell^+, \bar{q} & \\
\nu, q' & \\
\bar{\nu}_e & \\
\tilde{b} & \\
\tilde{t} & \\
\chi'_{131} & \\
\chi_{131} & \\
d & \\
d & \\
d & \\
\end{align*}
\]
GMSB Gaugino decay to Gravitino

- Signature: $P_{T,\text{miss}}$ and photon
- Slepton exchange only
- Heavy squarks avoid APV, CCU
 $\Rightarrow \lambda'_{11k}, \lambda'_{1j1}$ as large as 1 for $j,k \neq 1$
- $M_{\gamma\tilde{G}}$ using constraints of $E-P_z$, $P_{T,\text{miss}}$
ZEUS: RPV decay of Gaugino

- Assume squarks heavy, sleptons 100 GeV, $\lambda'_{111} = 1$
- Use 121 pb$^{-1}$ of e^+p collisions from 1996–2000
- Final state has positron or neutrino and 3 jets
- Wrong sign electron too forward to distinguish..
- Define discriminant function of 6 variables
- CC-like final state with neutrino not (quite) done
H1: comprehensive squark search

<table>
<thead>
<tr>
<th>Channel</th>
<th>e^+p collisions</th>
<th>e^-p collisions</th>
<th>Eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATA</td>
<td>SM exp.</td>
<td>DATA</td>
</tr>
<tr>
<td>eq</td>
<td>632</td>
<td>628 ± 46</td>
<td>204</td>
</tr>
<tr>
<td>ev</td>
<td>-</td>
<td>-</td>
<td>261</td>
</tr>
<tr>
<td>$e+ jets$</td>
<td>72</td>
<td>67.5 ± 9.5</td>
<td>20</td>
</tr>
<tr>
<td>wrong $e+ jets$</td>
<td>0</td>
<td>0.20 ± 0.14</td>
<td>0</td>
</tr>
<tr>
<td>$ee+ jets$</td>
<td>0</td>
<td>0.91 ± 0.51</td>
<td>0</td>
</tr>
<tr>
<td>$e\mu+ jets$</td>
<td>0</td>
<td>0.91 ± 0.38</td>
<td>0</td>
</tr>
<tr>
<td>$ve+ jets$</td>
<td>0</td>
<td>0.74 ± 0.26</td>
<td>0</td>
</tr>
<tr>
<td>$\nu+ jets$</td>
<td>30</td>
<td>24.3 ± 3.6</td>
<td>12</td>
</tr>
<tr>
<td>$\nu\mu+ jets$</td>
<td>0</td>
<td>0.61 ± 0.12</td>
<td>0</td>
</tr>
</tbody>
</table>
H1: important to cover final states!

- For the reaction $e^+ p \rightarrow \tilde{u}_L^{j=1,2}$, the BR is shown for $M_{\text{slepton}} = M_{\text{squark}}$.
- For the reaction $e^- p \rightarrow \tilde{d}_L^{k=1,2}$, the BR is shown for $M_{\text{slepton}} = M_{\text{squark}}$.

B.R. of considered states
Sum to nearly 100% for
Different Model assumptions.
Example here: sleptons with
mass equal to squarks or much lighter, 90 GeV.
Final limit nearly the same!
H1: MSSM with degenerate sfermions

$$\lambda'_{1j1} : e^+ p \rightarrow \tilde{u}^j_{L=1,2}$$

$$\lambda'_{11k} : e^- p \rightarrow \tilde{d}^k_{R=1,2}$$

Unconstrained MSSM, $j=1,2$

Unconstrained MSSM, $k=1,2$

H1

EXCLUDED

$$\lambda'_{121} \quad \text{(APV)}$$

$$\lambda'_{112} \quad \text{(CCU)}$$

$$\tan \beta = 6$$

$$-300 < \mu < 300 \text{ GeV}$$

$$70 < M_2 < 350 \text{ GeV}$$

$$M_{\text{LSP}} > 30 \text{ GeV} \text{ Imposed}$$
\(\lambda'_{1j1} : e^+ p \rightarrow \tilde{u}_L^{j=1,2}, \tilde{t}_L \)

\(\lambda'_{11k} : e^- p \rightarrow \tilde{d}_R^{k=1,2}, \tilde{b}_R \)

H1: MSSM with degenerate sfermions

Unconstrained MSSM, \(j=1,2 \)

Unconstrained MSSM, \(k=1,2 \)

\(10^{-2} \) to \(10^{-1} \)

\(\tan \beta = 6 \)

-300 \(< \mu < 300 \) GeV

70 \(< M_2 < 350 \) GeV

\(M_{\text{LSP}} > 30 \) GeV Imposed
H1: mSUGRA limits in plane $m_{1/2}$ vs. m_0

For $\tan \beta = 2$:

- $\lambda'_{1j1} : e^+ p \rightarrow \tilde{u}, \tilde{c}, \tilde{t}$
- $\lambda'_{11k} : e^- p \rightarrow \tilde{d}, \tilde{s}, \tilde{b}$

For $\tan \beta = 6$:

- $\lambda'_{1j1} : e^+ p \rightarrow \tilde{u}, \tilde{c}$
- $\lambda'_{11k} : e^- p \rightarrow \tilde{d}, \tilde{s}$

20 July 2005

Nichol Brümmer, SUSY-2005, Durham
H1: mSUGRA limit on $m_{1/2} = m_0$ vs $\tan \beta$

- Finally constrain to diagonal $m_{1/2} = m_0 = M$
- Mixing of stop sbottom states depends on $\tan \beta$
 - mass of light state decreases at high $\tan \beta$
 - can exclude higher values of M for same squark mass
- For $\tan \beta > 37$ final states with light stau contribute
Conclusion

• HERA results on RPV-SUSY
 - complementary, competitive to LEP, Tevatron, low energy limits
 - ZEUS light stop search beats APV limits when \(m_{\tilde{t}} < 250 \text{GeV} \)
 - H1: light stop \(\rightarrow \) sbottom + W, if \(\lambda'_{131} = 0.3 \), then \(m_{\tilde{t}} > 260 - 275 \text{GeV} \)
 - GMSB neutralino \(\rightarrow \) Gravitino + \(\gamma \), for \(\lambda'_{1jj} = 1 \),
 \(m_{\tilde{\chi}_i^0} > 112 \text{GeV} \) if \(m_{\tilde{\chi}_i^0} \approx m_{\tilde{\chi}_i^0} \) or \(m_{\tilde{\chi}_i^0} > 164 \text{ GeV} \) if \(m_{\tilde{\chi}_i^0} \approx 55 \text{ GeV} \)
 - ZEUS: RPV-decaying gauginos: \(M_2 > 160 \text{ GeV} \) if \(\lambda'_{111} = 1 \), \(m_{\tilde{\chi}_i^0} = 100 \text{GeV} \)
 - H1: combine many channels, MSSM, mSUGRA limits,
 if \(\lambda'_{1jk} = 0.3 \), squark masses up to 280 GeV are excluded,
 with some dependence on the SUSY-parameters.

• HERA II is producing good data
 - Polarized \(e^\pm \) beam: RPV couplings are chiral
 - HERA II total luminosity already equals that of HERA I
 - The HERA II \(e^-p \) sample already \(4.5 \times \) HERA I !!