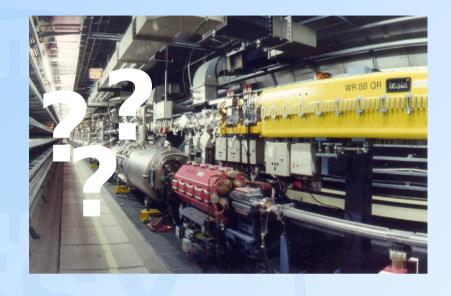
Search for Exotic Physics at HERA

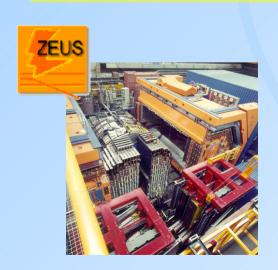
Gerhard Brandt
Physical Institute, Heidelberg

On behalf of the H1 and ZEUS collaborations

The 13th International Conference on Supersymmetry and Unification of Fundamental Interactions

SUSY 2005


July 18-23, 2005, IPPP Durham


Search for Exotic Physics at HERA

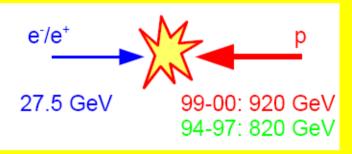
Contents

- HERA Running and Data
- Search for Magnetic Monopoles
- Searches for Leptoquarks and Lepton Flavor Violation
- Observation of High-P_T Leptons and Search for Doubly-Charged Higgs

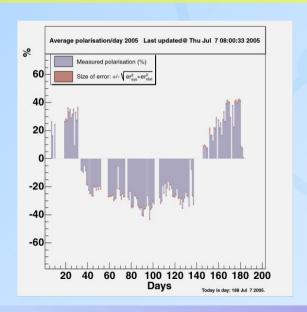
Focus on recent results and updates since last SUSY

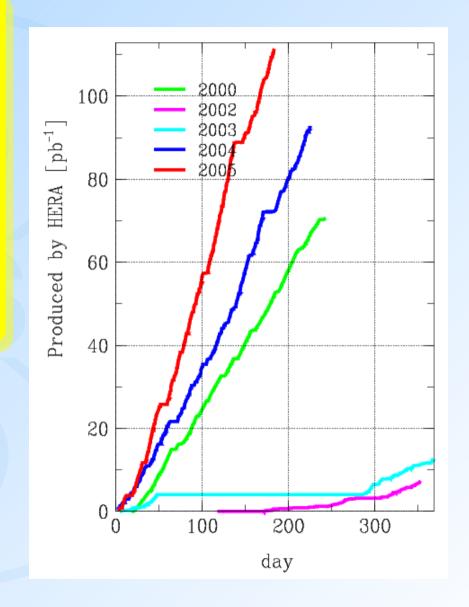
Sorry, not covered:

- Pentaguarks
- Excited Fermions, Leptons
- Contact Interactions, Large Extra Dimensions, Quark Radius
- All SUSY-related Searches at HERA (→ Talk by N. Brummer)



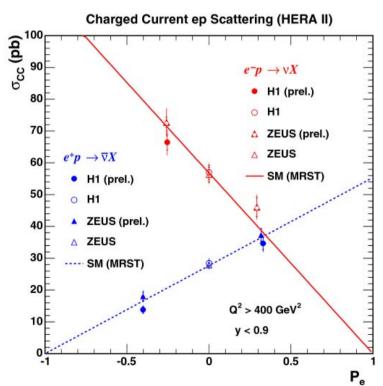
SUSY 2005, Durham


HERA Running and Data

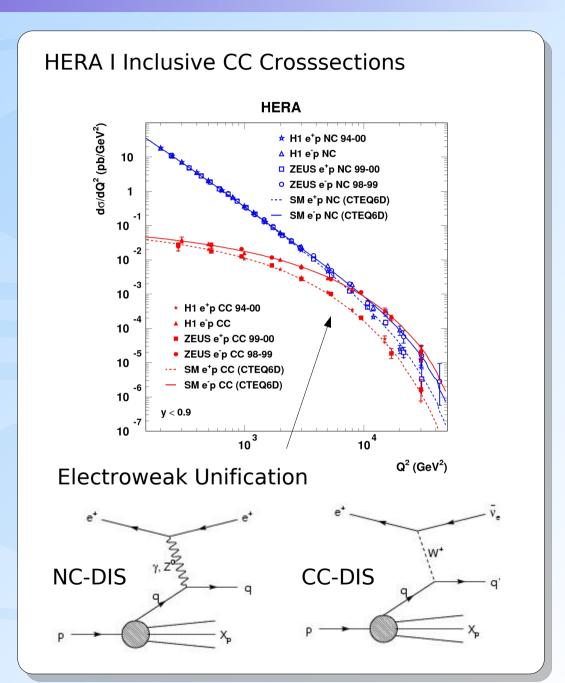

HERA

- HERA running well 1994 2000, 2003 now
- $e^{\pm}p$ Collisions at $\sqrt{s} = 320$ GeV

- Experiments busy collecting lumi
- Harvest up to now: H1 219 pb⁻¹, ZEUS 254 pb⁻¹
- At HERA II: Longitudinal e Polarisation up to 40%

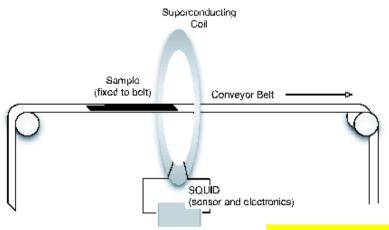

SUSY 2005, Durham

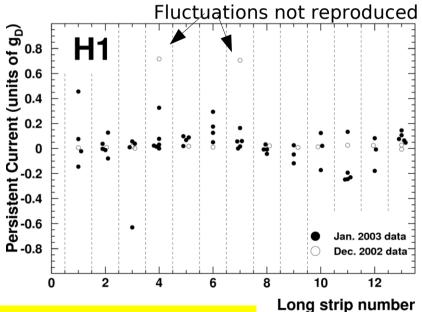
Inclusive NC/CC Crosssection Measurements


 HERA Data well described by SM over 7 orders of magnitude in Q²

HERA II Polarised CC Crosssections

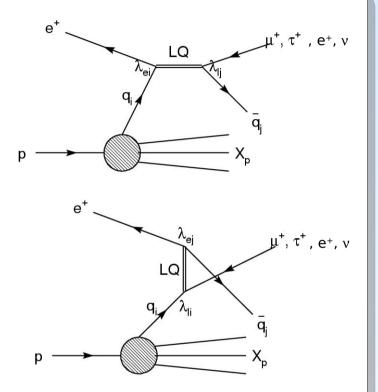
$$\sigma_{\mathit{CC}}^{\pm} = (1 \pm P_{\mathit{e}}) \sigma_{\mathit{CC,unpol}}^{\pm}$$

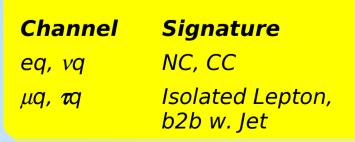



no evidence for righthanded currents

Search for Magnetic Monopoles

- Predicted by *Dirac* Proc.Roy.Soc. Lond. A 133, 60 (1931)
- Charge quantisation condition: $eg = n\hbar c/2$
- Minimum magnetic charge (n=1): Dirac magnetic charge g_D
- H1 Beampipe 1995-1997 (exposed to $\mathcal{L}=62~\mathrm{pb^{-1}}$)
- Made from Al: good stopping and binding power for HIPs
- ullet Cut into strips, passed through SQUID Sensitive down to $0.1 g_D$
- Induced currents from dipoles cancel
- Monopole: persistent current



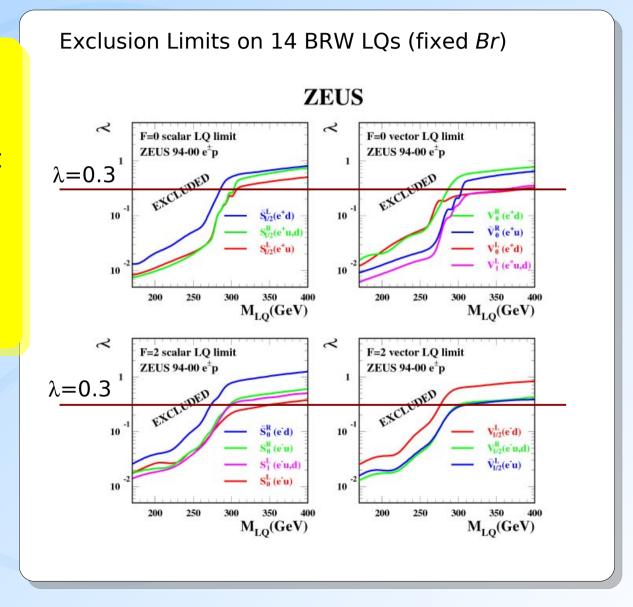

No magnetic monopoles found

Search for Leptoquarks / Lepton Flavor Violation

- ep-Collisions at HERA:
 Unique hunting ground for Leptoquarks
 Single production in s-channel (resonant) or u- channel
- Predicted by GUTs, SUSY, Technicolor, ...
- BRW Classification: 7 scalar LQs, 7 vector LQs Fermion Number F = 3B + L (= 0 or 2 at HERA)Parameters: M_{LQ} , Yukawa couplings λ_{ij}
- Lepton Flavor Violation if $eq \rightarrow LQ \rightarrow \mu q$, πq

Analyses at HERA

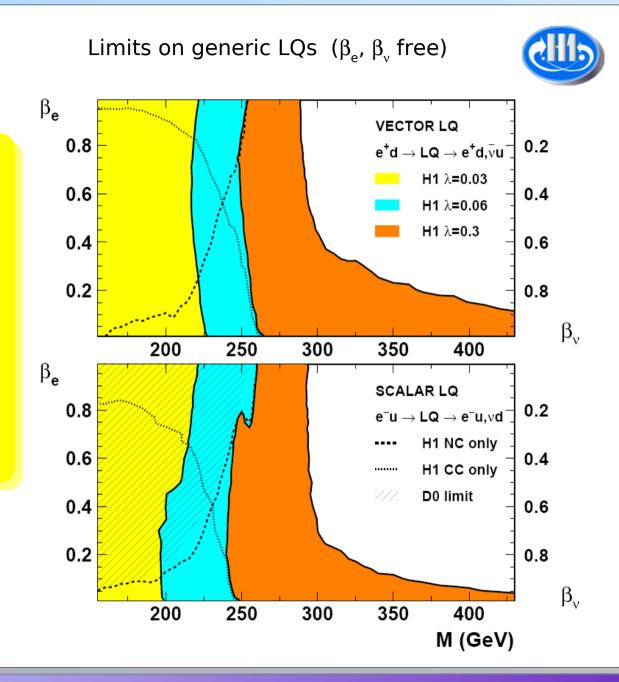
Lumi 117 pb⁻¹ 65 pb⁻¹


Lumi 130 pb⁻¹ 130 pb⁻¹

LQ and LFV Limits on LQ → eq, yq

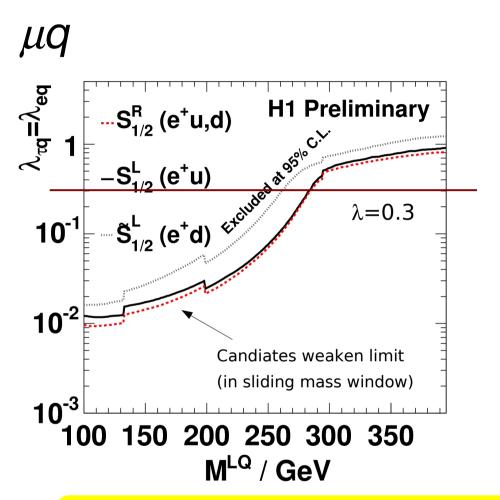
- Signature: SM-like NC-DIS and CC-DIS, No cuts to differentiate signal / background
- Derive limits on couplings using MC experiments using full x-sections
- Limit on M_{LQ} for coupling with em. strength $\lambda = 0.3$:

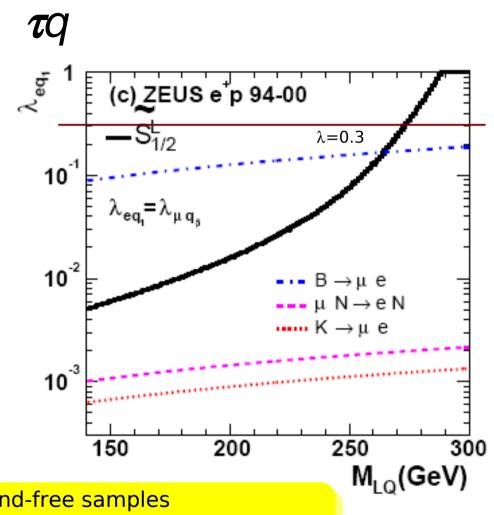
 $M_{10} > 275 \dots 325 \text{ GeV}$



Generalized Limits on LQ \rightarrow eq, vq

- Beyond BRW: More generic LQ models (eg. R-parity viol. SUSY) with free decay branching ratios
- HERA limits extend D0 limits considerably for LQ with $\beta_e > 0$ for $\lambda > 0.06$ (M_{LO} > 250 GeV)
- Limit on M_{LQ} for coupling with em. strength $\lambda = 0.3$ extends beyond resonant region:


 $M_{10} > 400 \text{ GeV}$



LQ and LFV

Limits on Lepton Flavor Violating LQs

- Good Limits because of almost background-free samples
- For coupling of em. strength $\lambda = 0.3$ can set $M_{LQ} < 270$ GeV
- Stringent Limits on LFV from low E and rare decays, but competitive in some cases, eg. c, τ sector (see DESY-05-016)

Isolated Lepton Events

Events with High-P, Isolated Leptons

• H1:

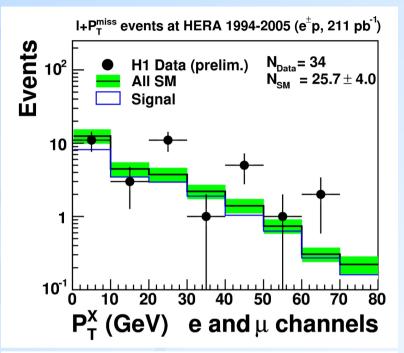
Steady flux (~ 1 / 10pb⁻¹) of isolated Leptons coming in, in excess of the SM expectation!

Analyses at HERA (Covered here*)

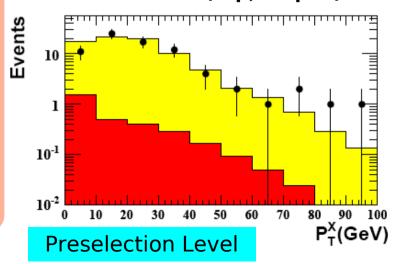
Channel	H1	ZEUS
е	211 pb ⁻¹	106 pb ⁻¹ (Re-Ana.)
μ	211 pb ⁻¹	130 pb ⁻¹

* Not further covered here (no news since SUSY 2004)

Tau Channel


- ZEUS: 2 events for 0.2 expected at $P_T^{\ \ x} > 25$ GeV
- H1: Observes nothing in this region

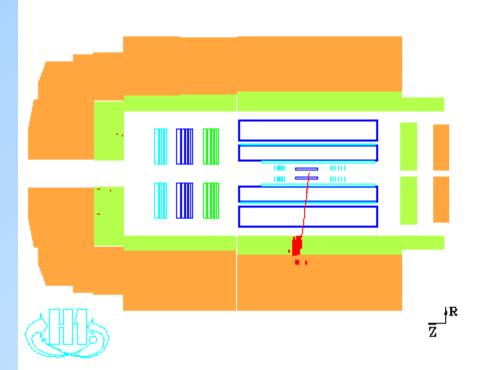
Single top Production

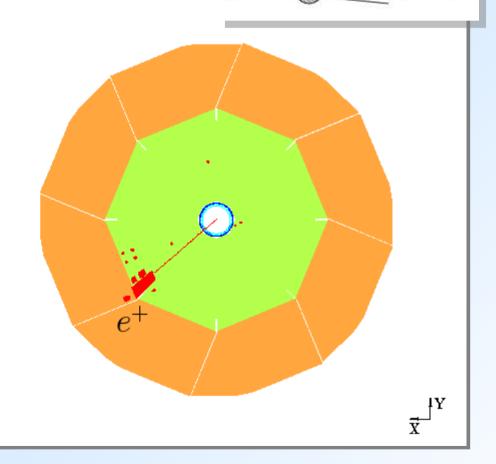

- Excess observed by H1 could be explained by single top production
- Competitive HERA exclusion limits set by H1, ZEUS

H1 Generic Search

• Observations repeated in general search for high-P_⊤ objects

ZEUS 2003-2004 (e+p, 40 pb-1)

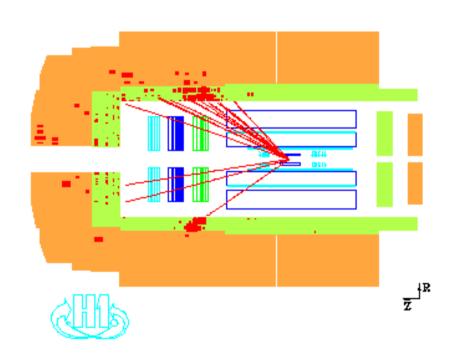


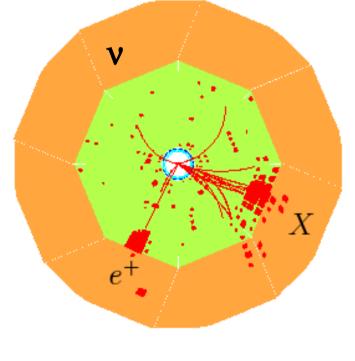

Typical Event with high P_T Lepton: Low P_T^X

Example of a SM like Event: Elastic W Production?

Event with $e + P_T^{miss}$ in HERA II e^+p data

$$\mathbf{P}_T^e=47~\mathbf{GeV}, \mathbf{P}_T^{miss}=47~\mathbf{GeV}$$




Atypical Event with high P_T Lepton: High P_T^X

Example of an exotic Event with high P_{τ}^{X}

$$\mathbf{P}_T^e=37~\mathrm{GeV}, \mathbf{P}_T^{miss}=44~\mathrm{GeV}, \mathbf{P}_T^X=29~\mathrm{GeV}$$

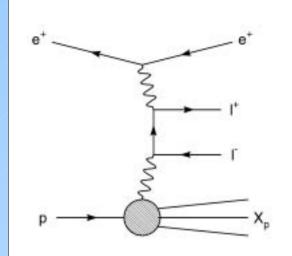
X Y

Isolated Lepton Events

e, μ Summary Tables

	1		Electron	Muon	Combined	
	H1 Prelir	ninary	obs./exp.	obs./exp.	obs./exp.	
1			(Signal contribution)	(Signal contribution)	(Signal contribution)	
	1994-2004 e^+p	Full Sample	19 / 14.6 \pm 2.0 (70%)	$9/3.9 \pm 0.6$ (84%)	$28 / 18.5 \pm 2.7 (73\%)$	
	$158 \ \mathrm{pb^{-1}}$	$P_T^X > 25~{ m GeV}$	9 / 2.3 ± 0.4 (80%)	$6 / 2.3 \pm 0.4 (84\%)$	$15 / 4.6 \pm 0.8 \ (82\%)$	
	1998-2005 e^-p	Full Sample	6 / 5.8 ± 0.9 (62%)	$0/1.5 \pm 0.5 \ (76\%)$	6 / 7.3.± 1.4 (65%)	
	53 pb^{-1}	$P_T^X > 25~{ m GeV}$	$2 / 0.9 \pm 0.2 (71\%)$	$0 / 0.9 \pm 0.2 (73\%)$	$2 / 1.8 \pm 0.3 (72\%)$	
	1994-2005 $e^{\pm}p$	Full Sample	$25 / 20.4 \pm 2.9 (68\%)$	9 / 5.4 ± 1.1 (82%)	$34 / 25.7 \pm 4.0 (71\%)$	
	$211 \; \mathrm{pb^{-1}}$	$P_T^X > 25 \text{ GeV}$	11 / 3.2 ± 0.6 (77%)	6 / 3.2 + 0.5 (81%)	17 / 6.4 ± 1.1 (79%)	

S	ZEUS Pro		
_	1999-2000 e ⁺ p	$12 < P_T^{X} < 25 \text{ GeV}$	$1/1.04 \pm 0.11$ (57%)
Ì	66 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	1 / 0.92 0.09 (79%)
	2003-2004 e ⁺ p	$12 < P_T^{X} < 25 \text{ GeV}$	$0/0.46 \pm 0.10 (64\%)$
	40 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	0 / 0.58 ± 0.09 (76%)


- HERA II: No high-PTX μ event
- Excess most prominent in e+p
- ZEUS Reanalysis with H1 like cuts still cannot confirm H1 excess (But starts at $P_T^{\ X} > 12$ GeV and full lumi not yet exploited)

ZEUS (Previo	ous Analysis)		
1994-2000 e [±] p 130.1 pb ⁻¹	P _T > 25 GeV	2 / 2.9 ± 0.45 (45%)	5 / 2.75 ± 0.21 (50%)

ZEU

Analysis of Events with 2 or 3 Leptons: e, \mu, \tau

SM Signal Processes

- Dominant SM Process: $\gamma \gamma \rightarrow l^+ l^-$
- Minor SM contributions:
 "Cabbibo-Parisi", "Drell-Yan", Υ→μμ

SM Background Processes

NC-DIS, Compton (misidentified hadrons, photons)

• Possible BSM Interpretation: Doubly Charged Higgs → next topic ...

Analyses at HERA Channel

ee, eee

μμ

 $e\mu$, $ee\mu$

Lumi

209 pb⁻¹

209 pb⁻¹

209 pb⁻¹

Lumi

130 pb⁻¹

101 pb⁻¹

_

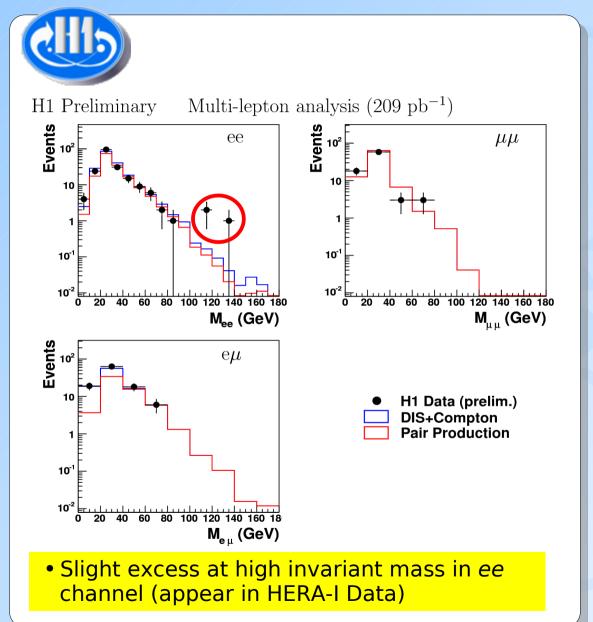
Multi-Lepton Production

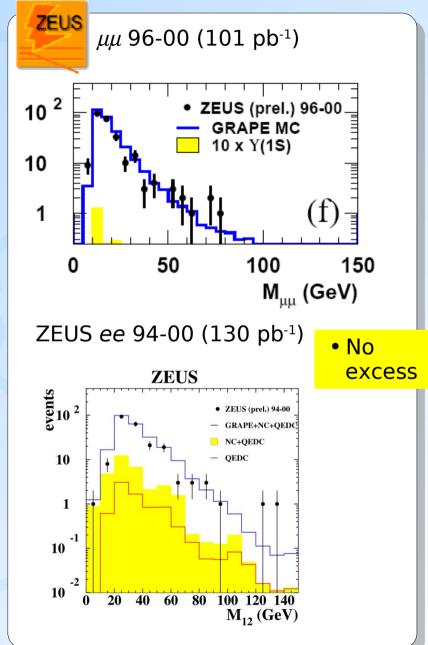
H1 preliminary 94-05 ($e^{\pm}p$ 209 pb⁻¹)

Selection	Data	SM	Pair Production (GRAPE)	NC-DIS + Compton
ee	190	196 ± 29	163 ± 17	33 ± 20
$\mu\mu$	82	85 ± 16	85 ± 16	_
$e\mu$	106	99 ± 13	61 ± 5	38 ± 10
eee	37	39 ± 4	39 ± 4	0.1 ± 0.1
$e\mu\mu$	50	51 ± 8	51 ± 8	

ZEUS preliminary 94-00 ($e^{\pm}p$ 130 pb⁻¹)

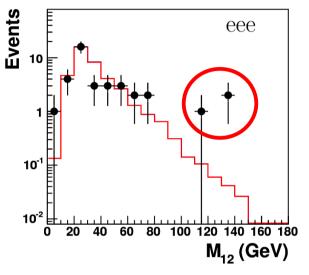
ee	191	213.9 ± 3.9	182.2 ± 1.2	31.2 ± 3.7
eee	26	34.7 ± 0.5	34.7 ± 0.5	_

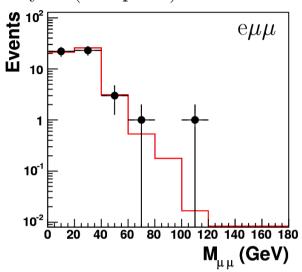

ZEUS preliminary 96-00 ($e^{\pm}p$ 101 pb⁻¹)


 $\mu\mu$ 255 294.9 294.7 ± 2.7 —

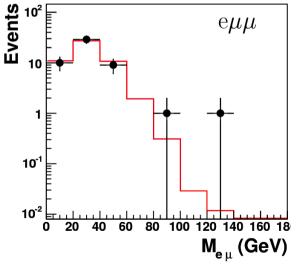
- Full Analysis yields good agreement with the SM for both experiments
- Dedicated measurements of Pair Production x-Sections done well understood
- But let's have a closer look at the mass spectra...

Di-Lepton Topologies

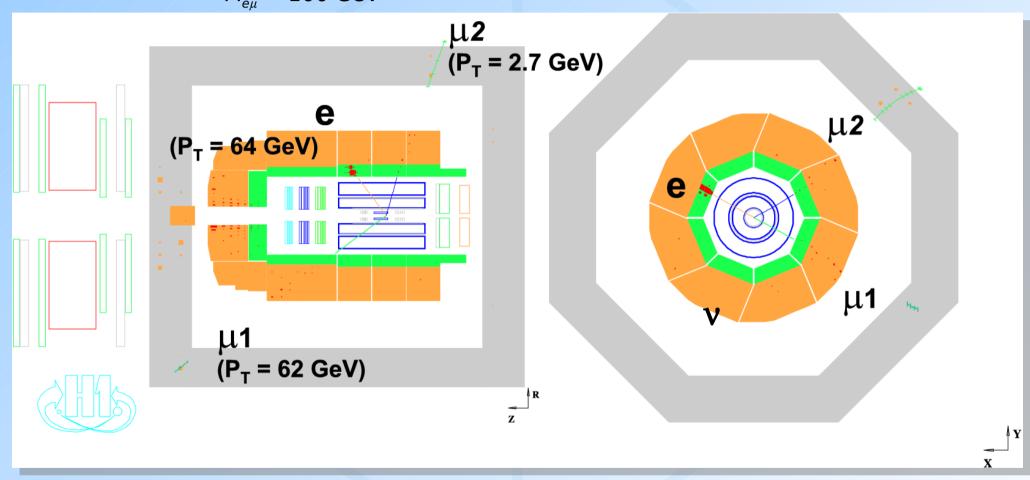




Multi-Lepton Events


Tri-Lepton Topologies

H1 Preliminary Multi-lepton analysis (209 pb^{-1})


- Another slight excess at high invariant mass in eee channel (in HERA I sample)
- Two eμμ events at high mass with low background (in HERA II sample)

SUSY 2005, Durham

Event Display: euu Event in HERA 2 Data

Yield of Events at High Invariant Mass / High ΣP_{+}

- At $\Sigma P_{\tau} > 100$ GeV, 4 obs. / 0.81 \pm 0.14 exp. • H1:
- ZEUS: Excess not confirmed with current lumi & selection

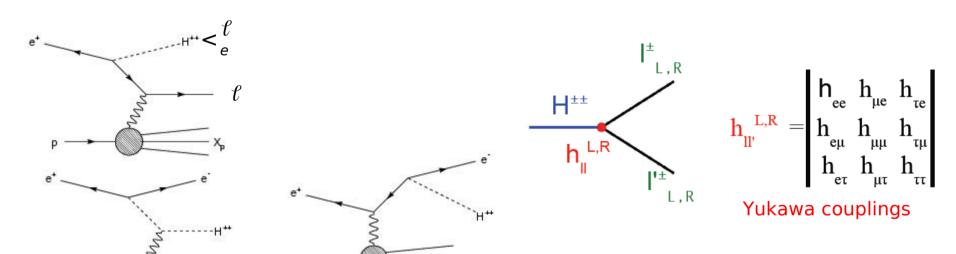
preliminary	94-05	(209	pb ⁻¹)
-------------	-------	------	--------------------

	Selection	Data	SM	Pair Production (GRAPE)	NC-DIS + Compton
ee	$M_{12}>$ 100 GeV	3	0.61 ± 0.14	0.39 ± 0.12	0.22 ± 0.06
$\mu\mu$	$M_{\mu\mu}>$ 100 GeV	0	0.047 ± 0.03	0.047 ± 0.03	_
е μ	$M_{e\mu}>$ 100 GeV	0	0.40 ± 0.04	0.40 ± 0.04	_
eee	$M_{12}>$ 100 GeV	3	0.39 ± 0.07	0.39 ± 0.07	_
e $\mu\mu$	$\mu M_{e\mu}>$ 100 GeV	1	0.05 ± 0.015	0.05 ± 0.015	_
$e\mu\mu$	$\mu M_{\mu\mu}>$ 100 GeV	1	0.02 ± 0.01	0.02 ± 0.01	-

ZEUS preliminary 96-00 (101 pb⁻¹)

μμ	$M\mu\mu > 100 \text{ GeV}$	2	2.16	2.16 ± 0.54	
----	-----------------------------	---	------	-----------------	--

ZEUS preliminary 94-00 ($e^{\pm}p$ 130 pb⁻¹)


ee $M_{12} > 100 \text{ GeV } 2 + 0.77 \pm 0.08$	0.47 ± 0.05	0.3 ± 0.09
eee $M_{12} > 100 \text{ GeV } 0 = 0.37 \pm 0.04$	0.37 ± 0.04	

Search for Doubly Charged Higgs

Motivation

- Signature similar to observed Multi-Lepton Events Explanation for events at high mass?
- Occur in extensions of the SM, e.g. Left-Right Symmetric Models

Expected Signature

- 2 High-P_⊤ Leptons with charge of beam lepton
- Invariant Mass M_{,,} compatible to decay of heavy Higgs boson

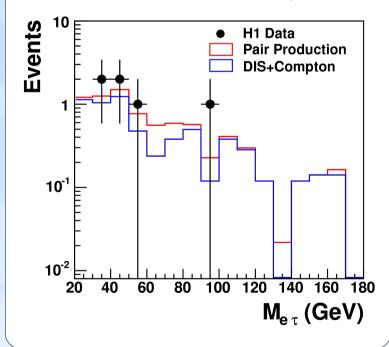
Strategy

- Use Multi-Lepton Sample for ee, $e\mu$, $\mu\mu$ and add τ in dedicated Analysis
- Add kinematic and same charge constraints

Search for H++ **Selection Results**

• *ee*(*e*), μμ(*e*)

									_		
M_H	electr	on anal	ysis ("	2e" + "3e")		muon	analys	is			1
(GeV)	N_{obs}	N_{bckg}	ε	N_{signal}	N_{obs}	N_{bckg}	ε	N_{signal}			(0
100	0	0.29	0.48	6.78	0	0.05	0.36	4.96			1
120	1	0.12	0.44	2.58	0	0.03	0.29	1.67			1
150	0	0.02	0.36	0.56	0	0.02	0.17	0.25		_ *	
(@ λ=0.3)								, ,			
				<u> </u>				dillo	•	/	
150 0 0.02 0.36 0 0.02 0.17 0.25 (@ λ =0.3)								еτ			
Decay	Decay $\tau \tau$ preselection $H^{\pm\pm}$ final selection Eff.×BR										

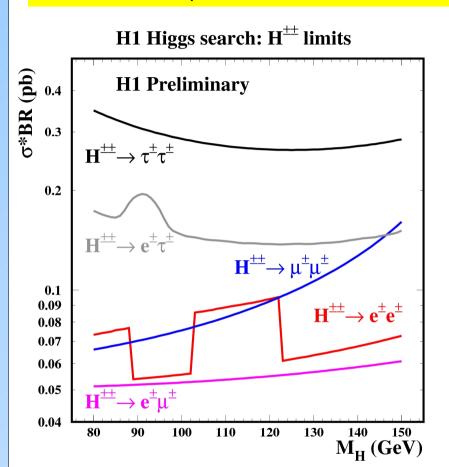

•	еμ
	- 1

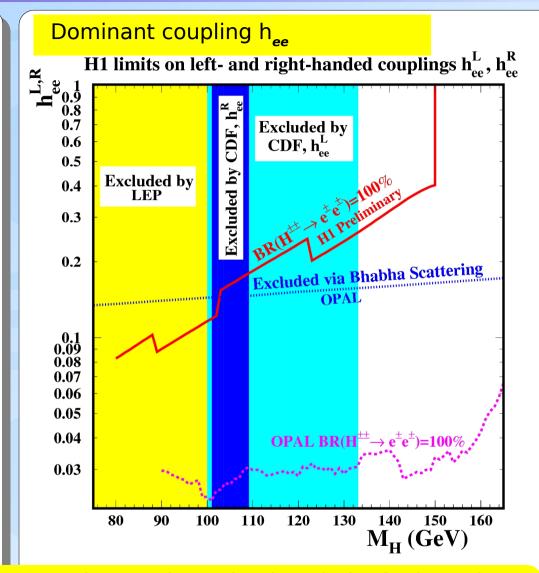
M_H	electron-muon analysis								
(GeV)	N_{obs}	N_{bckg}	ε	N_{signal}					
100	0	1.01	0.49	7.12					
120	0	0.65	0.47	2.82					
150	0	0.33	0.42	0.67					

Decay	au au preselection			$H^{\pm\pm}$ final selection			Eff.×BR	
Topology	obs.	SM bg	$(\tau\tau)$	obs.	SM bg	$(\tau\tau)$	elastic	quasi-elastic
$\epsilon \mu$	0	0.29 ± 0.03	(0.11)	0	0.09 ± 0.01	(0.00)	2.9%	2.6%
ϵj	0	1.20 ± 0.24	(0.31)	0	0.78 ± 0.16	(0.03)	6.9%	2.8%
μj	0	0.25 ± 0.05	(0.16)	0	0.03 ± 0.01	(0.03)	6.4%	5.5%
jj	1	0.38 ± 0.10	(0.16)	0	0.13 ± 0.08	(0.00)	8.0%	2.9%
total	1	2.12 ± 0.32	(0.74)	0	1.03 ± 0.19	(0.06)	24.2%	13.8%

- One *ee* event at $M_{ee} = 112$ GeV , one τ jj and one $e\tau$ event pass Higgs selection
- High-Mass Multi-Electron-Events observed by H1 not compatible with H++ Interpretation
- Set Limits on Crosssections and couplings h_{ee} , h_{eμ}, h_{eτ}

H1 Preliminary (new)

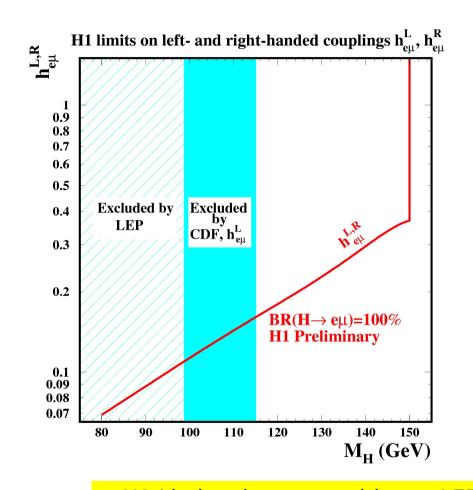


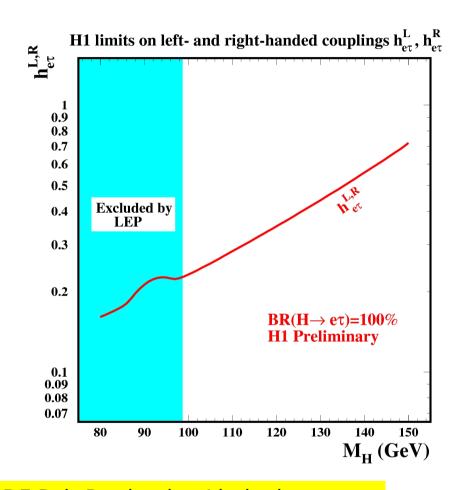


21 SUSY 2005, Durham

Limits on oxBr and dominant has

Limits on σ ($e^{\pm}p\rightarrow eH^{\pm\pm}X$) x Br($H^{\pm\pm}\rightarrow l^{\pm}l^{\pm}$)

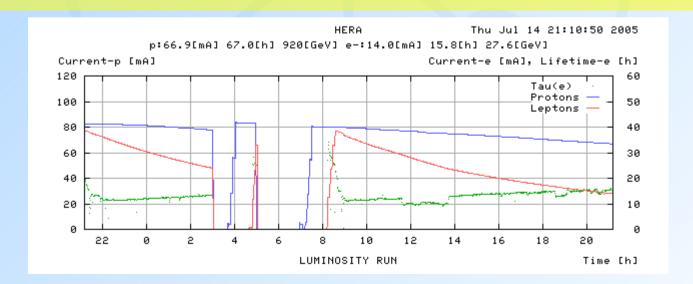




- H1 Limits competitive with CDF and LEP Pair Production Limits for large hee
- OPAL confirms: Multi-Electron-Events observed by H1 not compatible with H⁺⁺ Interpretation

Limits on Couplings hear, her

• H1 Limits also competitive to LEP, CDF Pair Production Limits in H⁺⁺ \to e μ , e τ channel for M_H > ~100 GeV

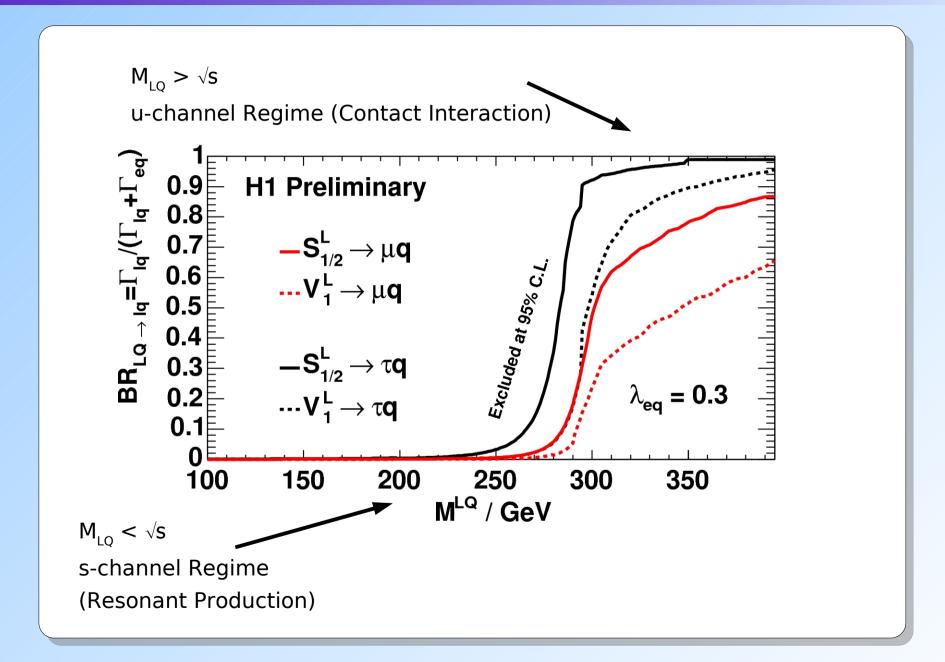


Summary & Outlook

- Competitive and complementary limits set at HERA on Monopoles, (LFV) Leptoquarks, Doubly Charged Higgs
- Puzzling events with isolated leptons observed in H1
- They keep coming to H1 at HERA II
- Need as much statistics as possible to solve this mystery
- End of HERA forseen in 2007 Expected do deliver 700 pb-1

Bulk of data still to come ...

... "Searching" at HERA is still exciting!



Backup

SUSY 2005, Durham 25

LQ Mass Limits from Lepton Flavor Violation

