Proton Structure Measurements at High Q² and x

Katarzyna Wichmann, Hamburg University on behalf of H1 and ZEUS Collaborations

- Introduction
 - F_2 Measurements
 - $xF_3 \& xG_3$ Measurements
 - CC Cross Section Measurements
 - High-*x* Measurements
 - DIS & Photoproduction Jet Data
 - Future Measurements
 - Summary&Outlook

UH

Deep Inelastic Scattering @ HERA

Neutral Current – γ or Z⁰ exchange
scattered electron in final state

Charged Current – W[±] exchange

neutrino in final state

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2 p \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

$$s=(p+k)^2$$
 $Q^2=x\cdot y\cdot s$

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

Q² – probing power
x – Bjorken scaling variable
y – inelasticity

NC Cross Sections

• NC cross section

$$\frac{d^2 \sigma_{NC}^{\pm}}{dx dQ^2} = \frac{2 \pi \alpha^2}{xQ^4} Y_{\pm} \left(F_2 - \frac{y^2}{Y_{\pm}} F_L \mp \frac{Y_{\pm}}{Y_{\pm}} xF_3 \right), \quad Y_{\pm} = 1 \pm (1 - y)^2$$

 NC cross sections for e⁺ and e⁻ differ for high Q² only

 $\overline{\mathbf{\sigma}}_{\mathrm{NC}}(x,Q^2)$

Proton Structure Measurements at High Q^2 and χ

UН

CC Cross Sections

CC Cross sections different for e⁺p and e⁻p scattering:

$$\frac{d^2 \sigma^{CC}(e^+ p)}{dx dQ^2} = \frac{G_F^2}{4 \pi x} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left(Y_+ F_2^{CC} - y^2 F_L^{CC} \mp Y_- x F_3^{CC} \right)$$

- electron/positron collisions probe different quark content of proton
- CC cross section suppressed compared to NC due to W mass

۲

UН

CC event in ZEUS detector

Structure Functions

dominant contribution to cross sections: F_2

$$F_2 \propto \sum_q e_q^2 x(q + \overline{q})$$

at high Q² xF₃ becomes significant

$$xF_{3} \propto \sum_{q} x(q - \overline{q})$$

• F_L only significant at low Q^2 and high y

 $F_L \propto \alpha_s xg(x, Q^2)$

- HERA data allow study of sea and valence quarks
- gluons accessible via scaling violation and jet data

UH

HERA Kinematic Range

- HERA data overlap with fixed target at low Q² and high x
- fixed target measurements extended to higher Q² and y
- access to non-perturbative
 region → low Q²<1 GeV², see
 V. Lendermann's talk
- access to sea and valence quark densities
- gluon distributions at low x
- valence quarks at high x

F₂ Measurements

$$F_2 \propto \sum_q e_q^2 x(q + \overline{q})$$

- sensitive to sum of q and qbar
- sensitive to gluon densities by QCD radiation
 - scaling violation
- measured with 2-3% precision
- for high $Q^2 > 1000 \text{ GeV}^2$ statistical error dominates
- H1 and ZEUS results in agreement and well described by QCD

UHH

Katarzyna Wichmann, Ringberg Workshop, 03.10.02

NC Cross Section Measurement

at high $Q^2 \sigma_{NC}$ differs significantly for e⁺p and e⁻p $\sigma^{\pm}_{\mathrm{NC}}(x,Q^2) \sim F_2 \mp f(y)xF_3$ • $\sigma^{e-p}_{NC} - \sigma^{e+p}_{NC} \sim xF_3$ xF_3 comes from interference between γ and Z^0 and Z^0 exchange: $xF_3 = xF_3^{\gamma Z} + Z$ -exchange

constrains valence quark content of proton

$$xF_3 \propto \sum_q x(q - \overline{q})$$

xF₃ Measurement

• $xF_3 \sim \Sigma x(q \cdot q bar)$ positive

۲

- H1 and ZEUS in agreement
- xF_3 measurements from HERA in agreement with global fit PDFs
- present measurement not very accurate and significant – better with HERA II data

- σ_{NC} small so high luminosity needed:
 - quark main uncertainty comes from statistics of e⁻p sample
 - HERA II has already ~7 times more luminosity
 - better measurements soon

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

xG₃ Measurement

ପ୍ତି

0.8

0.6

0.4

0.2

п

0.1

 $xF_3 = -a_e \chi_z x G_3 + 2v_e a_e \chi_z^2 x H_3$ \leftarrow pure Z exchange

γ-Z interference

UHH

- *H*₃ negligible compared to *G*₃
 (v_e small)
- at fixed x weak Q^2 dependence
- H1 and ZEUS in agreement
- good agreement with theory

0.6

0.7

х

 $Q^2 = 1500 \text{ GeV}^2$

- HERA data agree with BCDMS
- HERA extends measurement to x~0.05

CC Cross Section Measurements

CC different for e⁺ and e⁻

۲

 $\sigma_{CC}^{e+p} \propto [\overline{u} + \overline{c} + (1-y)^2 (d+s)]$

- sensitive to $d(x,Q^2)$
- suppresed by helicity factor (1-y²)

$$\sigma_{CC}^{e-p} \propto [u+c+(1-y)^2(\overline{d}+\overline{s})]$$

• sensitive to $u(x,Q^2)$

CC provides flavor information

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

CC e⁺p Cross Section Measurements

$\sigma_{CC}^{e+p} \propto [\overline{u} + \overline{c} + (1-y)^2 (d+s)]$

- d(*x*,*Q*²) poorly known → CC e⁺p data particulary valuable
- *xd* distribution dominates
 cross section at large *x*

HERA data can be used to constrain *d* quark distribution in valence region

CC Cross Section Measurements

 reduced cross section plotted as a function of (1-y)²

 $\sigma_{CC}^{e+p} \propto \left[\overline{u} + \overline{c} + (1-y)^2 (d+s) \right]$ $\sigma_{CC}^{e-p} \propto \left[u + c + (1-y)^2 (\overline{d} + \overline{s}) \right]$

- for e⁺p intercept gives (ubar+cbar) contribution and slope (d+s) contribution
- for e⁻p intercept gives (u+c)
 contribution and slope
 (dbar+sbar) contribution
- at large x

- e⁺p sensitive to d_v
- e⁻p sensitive to u_v

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

CC Cross Section Measurements

• H1 and ZEUS agree

- agreement with global PDFs
- at high x measurement of u_v and d_v densities

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

UΗ

Proton Structure Measurements at High Q^2 and χ

F2^{cc} & F2^{bb} Measurements

- $F_2{}^{\rm cc}$ and $F_2{}^{\rm bb}$ measured by H1 and ZEUS
- charm and beauty produced via BGF
 - directly sensitive to gluon parton densities

х

х

- measurements agree between experiments and with theoretical prediction
- could be used as additional constraint on gluon densities

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

IH

- x→1 PDFs not confronted with experiment, highest x point so far: x=0.75
- NC DIS: higher x → jet (from scattered quark) more forward in the detector
- jet not possible to measure anymore
 → x = 0.65 (previous publication)
 - measuring jet impossible → counting number of events (integrated cross section) → extending sensitivity to x=1
- Q^2 measured from electron, x from jet

UН

- standard selection ensuring:
 - appropriate DIS event,
 Q²= 576 GeV²
 - good jets with $E_T > 10 \text{ GeV}$
 - background free and well reconstructed sample

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

UH

compared to previous measurements:

- more bins
- better resolution
- bins extend to *x* = 1
 - ➡ zero jet events
- $x_{
 m edge}$ depends on Q^2
- 0-jet events come from $x_{edge} < x < 1$
- high purity in highest *x* bins

• comparable to mid-*x*

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

۲

 measured Born level cross sections

comparison with SM at NLO using CTEQ6D

ZEUS

 highest x points – integrated cross sections

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

Proton Structure Measurements at High Q^2 and χ

- expected impact on PDFs at highest x and also smaller x
 - now impacted modest
 - method developed, more data needed
 - might lead to change of parametrization

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

IH

- measured double differential cross sections generally agree well with
 - CTEQ6D PDFs
 - ZEUS-S PDFs
- for highest x bin data tend to lie above expectations

Proton Structure Measurements at High Q^2 and χ

Jet Data in Global Fits: NEW

- *inclusive DIS* measurements contribute only *indirectly* to *gluon* distribution, via *higherorder terms*
- *jet cross section* measurements sensitive *directly to α_s and gluon* (BGF, QCD Compton)
 - *small* experimental and theoretical *uncertainties*

enough sensitivity to determine proton PDFs within a single experiment

Jet Data in Global Fits: NEW

HERA jet data:

- very precise
- sensitive to gluon, eg BGF
- well understood correlations between points
- small uncertainty on jet energy scale

jet data never before rigorously included in global fits

calculations done using a grid of weights from pQCD predictions (theory program) and then interpolating

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

see details in A. Cooper-Sarkar's talk!

DIS & Photoproduction Jet Data

- DIS jet data used in global fit
- good agreement with ZEUS-JETS PDFs

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

UHH

- photoproduction jet data used in global fit
- good agreement with ZEUS-JETS PDFs

ZEUS-JETS Parton Densities

- HERA PDFs consistent with MRST and CTEQ
- H1 and ZEUS fits consistent despite different fit approach

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

UН

ZEUS-JETS Parton Densities

- only in ZEUS-JETS PDFs jets were included in rigorous way
- first time jet data from HERA included
- jet data has significant impact on gluon uncertainty for mid and high-*x* PDFs

NC & CC High Q² Cross Sections

- NC and CC cross sections compared to ZEUS-JETS PDFs
 - good agreement between data and prediction with ZEUS-JETS

Katarzyna Wichmann, Ringberg Workshop, 03.10.05

IHH

Impact for LHC

 NLO cross sections for jets and W for LHC

K. Nagano

HU

Katarzyna Wichmann, Ringberg Workshop, 03

Future Measurements

HERAII collecting data

۲

- e⁺p and e⁻p scattering
- polarized electron beams
- already ~7 times more luminosity for electron sample then HERAI
- better results & fits expected with high luminosity
- first CC & NC results from HERAII

⇒ see J. Meyer's talk

- HERA provides many measurements giving access to proton parton densities
 - *F*₂ measurements constrain sum of *q* and *qbar*, and gluon densities
 - *xF*³ measurements at high *x* sensitive to valence quark content of proton
 - CC cross sections at high x allow measurement of u_v and d_v densities
 - high-x DIS NC cross sections expected to have impact on highest-x and lower-x PDFs
 - DIS and photoproduction jet data improve uncertainty of mid and high-x gluon distributions

 $\mathbf{0}$

HERA II Prospects

- PDFs measurements from HERA I
 - inclusive DIS NC&CC cross section statistically limited
 - jet cross sections statistically limited at high E_T and high Q^2
 - jets measured only in certain kinematic regions NOT optimized for sensitivity to gluon

- HERA II present scenario:
 - 700 pb⁻¹ equally split between e⁺ and e⁻ until mid-2007
 - 350 pb⁻¹ for NC & CC e⁺/e⁻ scattering
 - ongoing ZEUS study on optimizing dijet phtoproduction measurement (C. Targett-Adams)

 \mathbf{H}

HERA II Projected Fits

statistically limited data sets

- statistical uncertainty scaled from present to 700 pb⁻¹
- systematic uncertainty taken from present data
- optimized jet cross sections
 - include simulated data points from NLO QCD
 - statistical uncertainty calculated for 500 pb⁻¹
 - no systematic uncertainties included

Katarzyna Wichmann, Ringberg Wo

IHH

HERA II Projected Fits

- uncertainties on valence quarks significantly reduced over whole x range
- uncertainties on sea quarks significantly reduced at high *x*
 - most significant improvement from increased statistics of HERA II
- uncertainties on gluon significantly reduced at mid-tohigh-*x* gluon
 - most significant improvement from optimized cross sections

➡ for details see C. Gwenlan's DIS05 talk

Katarzyna Wichmann, Ringberg Workshop, 03.10.0

IHH

HERA II Kinematic Plane

Katarzyna Wichmann, Ringberg Workshop, 03.10.05