

of

Particle Production and Fragmentation D H Saxon UNIVERSITY University of Glasgow GLASGOW

H1 & ZEUS data. New theory.

Charged Multiplicities in DIS and DDIS Inclusive photoproduction of non-strange mesons Strange Particle production **Charm fragmentation Baryons decaying to strange particles** Antideuteron production KK Bose Einstein correlations **Prompt photon production in DIS**

DIS particle multiplicities: use of Breit frame

DIS event

(De Wolf)

- Use Breit frame to compare multiplicity in ep to (one hemisphere) of e⁺e⁻
- Breit Frame definition:

$$2xP + q = 0$$

• "Brick Wall frame": incoming quark scatters off photon and returns along same axis.

• Current region (CR) of Breit Frame is analogous to e⁺e⁻ in Oth order pQCD =Quark-Parton Model and energy = Q/2

•But: QCD Compton and Boson-Gluon Fusion processes \rightarrow Particle migration out of current region

K.H.Streng et al. ZPC 2 (1979) 237; S. Chekanov J.Phys. G (1999) 59, hep-ph/9806511; 9810477

•Energy in CR < Q/2

•ZEUS: use measured energy in CR of Breit Frame as energy scale

$< n_{ch} > : ep$ (Breit frame) v e^+e^-

ZEUS 1994-97

 e^+e^- data divided by 2

Similar within largeish errors at high Q^2

ep result lower at lowest Q^2

Only looking at a fraction of each event.

D H Saxon. Ringberg, October 2005

Can we look at more of each event?

D H Saxon. Ringberg, October 2005

$< n_{ch} > : ep$ (Breit, $\gamma * p$ c.m.s.) v e^+e^-

ZEUS

excludes K^0 , Λ decay products $2^* < n_{cb} >$ for ep

Breit frame:

Closer to e^+e^- if 2^*E_{current} used as scale - black dots

 $\gamma^* p$ c.m.s. current region:

close to e^+e^- over wide range using W as scale – blue dots

D H Saxon. Ringberg, October 2005

ZEUS: M_{eff} using best part of central tracker

 $< n_{ch} > v M_{eff} \text{ in } x \text{-bins}$

H1: $\langle n_{ch} \rangle$ v Q^2 in DIS and DDIS at fixed W

$< n_{ch} > v W$ at fixed M_x in DDIS (De Wolf)

At fixed M_X : changing W means changing gap and x_{IP}

Regge factorization means diffractive pdf's AND Final state properties independent of x_{IP}

W-dependence = breaking of Regge factorization

In resolved Pomeron model: pomeron + reggeon Large M_X: Data move from Reggeon to Pomeron as W grows

H1 Prel. DDIS ($\eta^* > 1$) All Q²

D H Saxon. Ringberg, October 2005

DIS v DDIS: Rapidity distribution

KNO scaling

D H Saxon. Ringberg, October 2005

$\rho^0 f_0 f_2, \eta, \pi^{\pm}$ inclusive photoproduction

H1 prelim.

Tricky background & reflection removal

Universal curve plotted against (p_T+m)

 $K^0, \Lambda^0, \Lambda^0$ production

D H Saxon. Ringberg, October 2005

 K^0 , Λ^0 , Λ^0 : p_T and η

Ariadne mostly OK: overestimates K^0 rate. Favours smaller *s/u* ratio (0.22?) $\Lambda - \Lambda$ bar: no significant asymmetry

 K^0 , Λ^0 , Λ^0 : Q^2 and x

Ariadne: Λ/K poor at low *x* $\Lambda - \Lambda$ bar: no significant asymmetry

Λ,Λ polarisation

Angular distribution of $\Lambda \rightarrow \pi^{-}p$ decay in Λ rest-frame $(1 + \alpha P \cos \theta)$: $\alpha = 0.642$

No Λ,Λ bar polzn with unpolarised e^{\pm} ?polarised beams at HERA-II

D H Saxon. Ringberg, October 2005

Charm production

 $D^+ \rightarrow K^- \pi^+ \pi^+$

1.8

1.8

1.9

 $\rightarrow K^{-}\pi^{+}$

1.9

200

• H1

Fit

 $\mathbf{2}$

• H1 – Fit

m(Kππ) [GeV]

D^{*+} , D^+ , D^0 , D_s^+ , Λ^+_c observed

D H Saxon. Ringberg, October 2005

2.1

2

 $m(K\pi)$ [GeV]

 $D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-: \Lambda_c^{+} \rightarrow p K^- \pi^+ \text{ signals}$

M(KK) within 8 MeV of ϕ mass

dE/dx info used for particle ID

D H Saxon. Ringberg, October 2005

Charm fragmentation supports universality

D H Saxon. Ringberg, October 2005

Baryons decaying to strange particles

p, p, K⁺, *K*⁻ reconstruction: tracks from primary vertex dE/dx identification: ZEUS – region method in blue band and dE/dx > 1.5 mips and p < 1.5 GeV

H1 – likelihood method

 K_{s}^{0} →π⁺π⁻: secondary vertex. $p_{T}(K_{s}^{0}) > 0.3 \text{ GeV}, |η(K_{s}^{0})| < 1.5$ exclude Dalitz pairs, γ-conversions exclude Λ candidates

 $K^0_{s}p$ mass resolution ZEUS 2.4, H1 5 MeV

$K^0_{s}p$ mass spectra ($\Lambda^*, \Sigma^*, \Lambda_c$, pentaquark)

Combinatorial backgrounds higher in γp (< n_{ch} > higher) & low Q^2

Mass peaks: $\Theta^+(1520)$ candidate in DIS (see separate talk)

 $\begin{array}{l} \Lambda_{c}(2286) \text{ in PHP and DIS} \\ \text{seen equally in } \textit{Kp, Kpbar} \\ (162\pm36, \ 116\pm38 \ \text{ev}) \\ \text{seen equally } \eta >0, \eta <0 \\ (131\pm40, \ 145\pm34 \ \text{ev}) \end{array}$

Consistent with $\gamma^*g \rightarrow cc$

K-*p*, *K*+*p* mass spectra ($\Lambda(1520)$)

Mass peak:

A (1520) in PHP and DIS seen equally in *Kp*, *Kpbar* (1207±143, 1402±142 ev) seen equally $\eta > 0, \eta < 0$ (1337±151, 1246±127 ev)

Consistent with $\gamma^* g \rightarrow q \bar{q}$

D H Saxon. Ringberg, October 2005

$\Lambda^0 \pi^{\pm}$ mass spectra (Ξ, Σ^* , pentaquark)

Demand decay vtx: see $\Xi^- \rightarrow \Lambda \pi^-$, also $\Xi^* \rightarrow \Xi \pi$

D H Saxon. Ringberg, October 2005

Anti-deuteron production and heavy particle search

d,*t* mainly from background Nothing heavier than *t* seen.

anti-*d*: physics beyond standard fragmentation
45 anti-*d* in 5.5 pb⁻¹
0 anti-*t*, 0 heavier

 $< W_{\gamma,p} > = 200 \text{ GeV}, \ 0.2 < p_t/M < 0.7, -0.4 < y_{lab} < 0.4$

anti-*d* production: compare γp , *pp*, *AuAu*

 $\sigma(\bar{d}) = 2.7 \pm 0.5 \pm 0.2 \text{ nb}$ $\sigma(M_{-/+} > M_{\bar{d}/t}) < 0.19 \text{ nb} @ 95\% \text{ C.L.}$

0.2< $p_t/M{<}$ 0.7, $\mid y_{lab} \mid {<}$ 0.4

Normalised invariant crosssections:

γ*p*, *pp* good agreement *AuAu* much higher

d/p ratio higher in *AuAu* also

anti-d production: compare yp, pp, AuAu

Coalescence model: $\frac{1}{\sigma} \frac{d^3 \sigma(d)}{d^3 p} = B_2(\frac{1}{\sigma} \frac{d^3 \sigma(p)}{d^3 p})(\frac{1}{\sigma} \frac{d^3 \sigma(n)}{d^3 p})$

 B_2 inversely proportional to size of interaction region.

 $\gamma p: B_2 = 0.010 \pm 0.002 \pm 0.001$

Similar values in pp, pA

Much lower values in AuAu

(Very heavy ions): Bevalac (*NeAu*), AGS (*AuPt*), SPS(*PbPb*)

Bose-Einstein correlations: $K^0_{\ s}K^0_{\ s}$ and $K^{\pm}K^{\pm}_{ZEUS}$

Study space-time structure of particle source via, $f(Q_{12})$, its Fourier transform Earlier shown BEC independent of Q^2

Correlation function: $R(p_1,p_2) = \rho(p_1,p_2)/\rho(p_1)\rho(p_2) = |1 + f(Q_{12})|^2$ where $Q_{12} = p_1 - p_2$

Fit function: $R(Q_{12}) = \alpha (1 + \delta Q_{12})(1 + \lambda \exp[-r^2 Q_{12}^2])$

r = source radius, $0 < \lambda < 1$

Measure $R(Q_{12})$ in data by event-mixing double ratio

 $R = \{ P(\text{data})/P_{\text{mix}}(\text{data}) \} / \{ P(\text{MC})/P_{\text{mix}}(\text{MC}) \}$

All evaluated at the same Q_{12} . MC has no BE correlations

Bose-Einstein correlations: $K^{\pm}K^{\pm}$

r-value agrees with LEP

λ-value is lower. Reasons: ?different fragmentation, ? $φ^0(1020)$ decay in *p*-fragmentation region

Bose-Einstein correlations: $K_{s}^{0}K_{s}^{0}$

 $r (DIS) \sim r (LEP)$ $\lambda (DIS) > \lambda (LEP)$ reasons: $? f_0(980) \rightarrow K^0_s K^0_s$ affects λ at low Q_{12} (ALEPH,DELPHI removed $f_0(980)$ effects

Prompt photon production: γ radiation from quark line

Backgrounds: γ radiation from initial state, final state *e* (DIS) γ from jet fragmentation γ from π^0 , η^0 decay

γ signal $-\pi^0$ and η^0 backgrounds Use e.m. calorimeter shower shape

ZEUS z-strips

 γ shape from DVCS data π^{0},η^{0} shapes from MC Fit for γ,π^{0},η^{0} fractions

Background subtraction is rather stable against errors in γ shape.

H1 cells

 γ ,($\pi^0+\eta^0$) shapes from MC Likelihood discriminator in (E_T , η) bins

D H Saxon. Ringberg, October 2005

H1: compare to NLO and PYTHIA

pQCD (NLO, Fontannaz *et al*) agrees within errors PYTHIA: describes shapes but a bit low.

- >50% direct exchanged γ .
- Radiation from electron line small
- Multiple interactions hurt photon isolation cut and so reduce the cross-section

γ +jet – compare to LO and NLO (Fontannaz *et al*) (NLO scale variation 0.5 E^{γ}_{T} to 2 E^{γ}_{T})

Correction to NLO for multiple interactions applied by PYTHIA

– improves fit at large η^{γ}

Large negative NLO corrections at $\eta^{jet} < 0$

NLO describes the data within errors

$eq \rightarrow eq\gamma$ in Deep Inelastic Scattering

Minimise ISR, FSR (139.8° < θ_e < 171.9°) far from γ

Two hard scales:

 (Q^2, E_T^{γ}) hard for MC to simulate PYTHIA v6.206 (new) HERWIG v6.1

Comparisons available for *e* γX , *e* γ jet

NLO calculations $O(\alpha^3 \alpha_s)$ by Kramer and Spiesberger Based on A. Gehrmann-de Ridder,K,S Nucl. Phys. **B578** (2000) 326

- includes ISR, FSR, vertex diagrams, all interferences,
- predictions for $(e+\gamma+\text{one jet})$ including renorm. scale uncertainty

DIS: $eq \rightarrow e\gamma X$ (inclusive)

DIS: $eq \rightarrow e\gamma$ + one jet

D H Saxon. Ringberg, October 2005

DIS: $eq \rightarrow e\gamma$ + one jet Comparison to NLO calculations (Kramer & Spiesberger)

D H Saxon. Ringberg, October 2005

MRST:

first measurement of $\gamma_p(x,Q^2)$?

ZEUS: "Observation of high E_T photons in deep inelastic scattering", hep-ex/0402019 $\sqrt{s} = 318 \text{ GeV}, Q^2 > 35 \text{ GeV}^2, E_e > 10 \text{ GeV}$ $139.8^\circ < \theta_e < 171.8^\circ$ $5 < E_T^{\gamma} < 10 \text{ GeV}, -0.7 < \eta^{\gamma} < 0.9$ $\sigma(ep \rightarrow e\gamma X) = 5.64 \pm 0.58 \text{ (stat.)} \pm \frac{0.47}{0.72} \text{ (syst.) pb}$ prediction using MRST2004 QEDpdfs: $\sigma(ep \rightarrow e\gamma X) = 6.2 \pm 1.2 \text{ pb} \text{ (scale dependence)}$

Note: exchanged e* carries the Q²

MRST: lowest order theory. No jets prediction. $p_t(e) = p_t(\gamma)$

 $\langle Q^2 \rangle = 75$ (*cf* data 87). Would increase with higher orders Encouraging agreement. Can they predict (γ + jets) distributions?

Summary

Charged Multiplicities in DIS and DDIS use of W, $E_{current}$: unified look at DIS, DDIS Inclusive photoproduction of non-strange mesons universal rate as function of (p_T+m) Strange Particle production $p_{\rm T},\eta,Q^2,x,\Lambda$ polarisation Charm fragmentation universality: DIS, photoproduction, e^+e^- Baryons decaying to strange particles dE/dx for K^{\pm} , p: resonances seen, pentaquark search Antideuteron production dE/dx. Coalescence model KK Bose-Einstein correlations compare LEP, $f_0(980)$ issues Prompt photon production in DIS first measurement of $\gamma p(x, Q^2)$?

Kinematic region

H1 photoproduction	ZEUS photoprod'n (old)	ZEUS DIS
96-00 data (105 pb ⁻¹)	96-97 data (38 pb ⁻¹)	96-00 data (121 pb ⁻¹)
$Q^2 < 1 \text{ GeV}^2$		$Q^2 > 35 { m ~GeV^2}$
$5 < E_T^{\gamma} < 10 \text{ GeV}$ (15 GeV for ZEUS photo d σ /d E_T^{γ})		
$-1.0 < \eta^{\gamma} < 0.9$	$-0.7 < \eta^{\gamma} < 0.9$	
122 < W < 266 GeV	134 < W < 285 GeV	31(69)%@300(318)GeV
Isolation: $E_t^{\gamma}/E_t^{\text{total}} > 0.9$ in cone of $\Delta R = (\Delta \Phi^2 + \Delta \eta^2)^{1/2} = 1$		
Prompt photon + jet		
Inclusive k_T		Cone $\Delta R = 0.7$
$E_t^{\text{jet}} > 4.5 \text{ GeV}$	$E_t^{\text{jet}} > 5 \text{ GeV}$	$E_t^{\text{jet}} > 6 \text{ GeV}$
$-1.0 < \eta^{jet} < 2.3$	$-1.5 < \eta^{jet} < 1.8$	

Table after Lemrani

Inclusive prompt photon cross section

Data consistent within errors.

- Multiple interactions matter at $x_{\gamma} < 0.5$ (resolved γ region)
- NLO + MI describes the data

 $(\gamma + jet)$

Avoid symmetric E_T cuts

Prompt photon + jet do / dE↑ (pb/GeV) H1, prelim. O QCD $E_{T}^{jet} > 5 GeV$ 10 1 10 6 8 E^γ_T (GeV)

Fontannaz et al:

NLO infrared instabilities with symmetric cuts *e.g.* $E^{jet}_{T,min} = E^{\gamma}_{T,min} = 5 \text{ GeV}$

Unphysical drop in prediction just above cut (similar to dijets)

γ signal extraction in ZEUS

Shower shape variables for γ (from DVCS data), π^0 , η (from MC) Using 5 cm z-strips in Barrel e.m. calorimeter $(-0.7 < \eta < 0.9)$ $\delta Z = \sum_{i} E_{i} |Z_{i} - \langle Z \rangle | / \sum_{i} E_{i}$ f_{max} = fraction of γ energy in highest cell ZEUS ZEUS (use Events Events $\delta Z > 0.65$ ZEUS(prel.) 96-00 ZEUS (prel.) 96-00 250 : MC only) η : MC + π : MC 200 π + γ : DVCS 200 150 150 100 100 $S/B \sim 0.44$ 50 50 0.4 1.2 1.8 14 $\langle \delta Z \rangle$ 0.1

η fraction fixed from background at $\delta Z > 0.65$ Background subtraction from f_{max} plot. Rather insensitive to errors in modelling showers (included in systematic errors)

γ signal extraction in H1

Likelihood discriminator used in (E_T, η) bins to allow for energy dependence and varying calorimeter granularity.

- Shower shape variables well described.
- photoproduction S/B ~ 1