Physics with charm quarks at HERA

On behalf of the ZEUS and H1 Collaborations By John Loizides University College London RINGBERG WORKSHOP: New Trends in HERA Physics October 2005

1

Outline of charm at HERA

- HERA and its charm
- Perturbative QCD calculations.
- D* cross sections
- D* and Jet production.
- Charm fragmentation aspects.
- F_2^{cc} .

HERA's charm production

Boson Gluon fusion

Charm directly sensitive to the proton gluon density.

Study of charm over huge kinematical ranges: $1.5 < p_T^c < 30 \text{ GeV}, 0 < Q^2 < 1000 \text{ GeV}^2$.

Photoproduction: $Q^2 \le 1 \text{ GeV}^2$

DIS: $Q^2 > 1 \text{ GeV}^2$

HERA's charm production

At LO Boson Gluon Fusion (BGF) dominates $\rightarrow \gamma g \rightarrow c\bar{c}$ Direct and Resolved contributions

 σ = proton PDF $\otimes \sigma_{\gamma g \rightarrow QQ} \otimes$ photon PDF \otimes fragmentation function

Charm pQCD calculations

pQCD calculations are performed in different ways: Massive (PHP S.Fixione et al) (DIS Harris and Smith), Massless(B_{_}Kniehl et al) and a combined method (M. Cacciari et al).

The "Massive" approach, to fixed order in α_s :

 $\rightarrow m_Q \neq 0$ and the heavy quarks (c and b) are not parts of the structure functions. Heavy quarks produced dynamically in the hard interaction. \rightarrow reliable at $p_T \approx m_Q$

DGLAP evolution is used to obtain the quark and gluon densities.

Programs for Photoproduction: FMNR (Frixione et al.) and

DIS: HVQDIS (Harris+Smith)

Charm pQCD calculations

"Massless" Approach: re-summation of $\alpha_s \ln(p_T^2 / m_c^2)$ at orders in α_s :

 $\rightarrow M_Q = 0 \rightarrow$ the heavy quarks are an active flavour in the PDF

Heavy quarks can also be produced in flavour excitation

Relaible $p_T >> m_{Q_i}$ (B Kniehl et al)

Charm Tagging

Charm tagging via D* meson $D^* \rightarrow D^0$, π Where $D^0 \rightarrow K$, π HERA is a charm factory 42680 ± 350 D* mesons. H1 & ZEUS for HERA I 50<luminosity <100 pb⁻¹.

D* Photoproduction inclusive cross sections

Inclusive D* production a) • ZEUS (prel.) 98-00 over a large lage of $p_T^{D^*}$ At large $p_T^{D^*}$ massive calculation does better then massless. 10 NLL QCD AFG for y GRV for y only direct y 10 At lower values of $p_T^{D^*}$ massless calculation does better then massive. NLO QCD -3 Expect scenario to be the 10 other way round. 5 10 15 20 $p_{\tau}(D^{*})$ (GeV)

D* Photoproduction inclusive cross sections

2005

- •D* selection in photoproduction
- •NLO "massive" and "massless" predictions are compared to the data.
- •d σ / dW is described well, but the shape of d σ / d η (D*) is not well described in shape.
- •Theoretical uncertainties from charm mass and renormalisation scale are large!
- •Precise data \rightarrow Need for NNLO.

Charm over all Q²

Comparison of low Q^2 data, using the beam pipe calorimeter (BPC) to tag the scattered electron.

NLO charm production tested across the transition region from DIS to Photoproduction.

Low Q² is much smaller than charm mass.

High Q² is much larger than charm mass

Good agreement with massive theory.

Charm Jet Production

•D* production and Jet production

•Tag second hard parton by a using a Jet (k_T Algorithm definition)

• Jet and D* correlations can be studied when the D* is NOT associated to with a Jet \rightarrow angular correlations arising from higher orders.

• Jet E_T provides an extra hard scale: test QCD!

Charm Jet Production

- D* photoproduction and Jet selection.
- "massive" and "massless" pQCD predictions give reasonable descriptions of the data.
- Data lie on upper bound of $\frac{1}{2}$ NLO \rightarrow lower charm mass and renormalisation scale changed simultaneously.

Charm Jet Production

- Comparison to pQCD and LO+PS models. \rightarrow CASCADE and PYTHIA describe data. pQCD does not.
- Only one parton radiation from NLO not sufficient to describe the data.

Charm Dijet Production

- D* Dijet photoproduction.
- • M^{JJ} and x_v^{obs} well described.

- discrepancy?

Charm Dijet Production

- D* Dijet photoproduction.
- Split sample direct-enriched $(x_{\gamma}^{obs} > 0.75)$ resolved-enriched $(x_{\gamma}^{obs} < 0.75)$.*
- Discrepancies between pQCD and resolved-enriched $(x_{\gamma}^{obs} < 0.75).$
- LO+PS can describe shape but not normalisation.
- \rightarrow need for higher order calculations e.g. NLO +PS _{John Loizides Ringberg October}

15

Charm Fragmantation

•What is the proper parameterisation for the fractional transfer of c-quark energy/momentum to a given D-meson (z)? Fragmentation function, f(z).

Find a jet containing a D* and relate the D* energy to the energy of the jet:

Charm Fragmantation

Differences in kinematical region selected as well as different parameters tuned from H1 to ZEUS in the Monte Carlos.

Charm Fragmantation

ZEUS

No gluon splitting in low-energy data, seen at low z in e⁺e⁻.

A global fit of the z values would result in a more rigorous test of the compatibility of these results.

tracker. • Significance (S = I/σ) provided better signal to

• Significance ($S_L = L / \sigma_L$) provided better signal to background ratio for many of the D mesons.

- D meson signals for D⁺, D⁰, D_s⁺ and D^{*+} in DIS using secondary vertex tagging.
- Clean signals to study fragmentation processes.

R_{u/d} measurement

•Are u and d quarks produced equally? $R_{u/d} = cu / cd$.

•N.B// different production mechanism to LEP and at lower momentum.

 \rightarrow u and d quarks are produced equally in charm fragmentation

γ_s measurement

What is the s-quark production suppression? $\gamma_s = 2cs / (cd + cu)$

Very good agreement between measurements.

Charm strange meson production is suppressed by a factor of ≈ 3.9 in charm fragmentation. Excited charm-strange mesons like to decay to non-strange D mesons.

$P_V^{\ d}$ measurement

Are vector D* and pseudo scalar (D) mesons produced by spin counting? $P_v = V / (V + PS) (= 0.75?)$

 $P_V \neq 0.75 \rightarrow$ naïve spin counting does not work for charm.

 $F(c \rightarrow D) = N(D) / N(c) = \sigma(D) / \sum_{all} \sigma(D)$

Are these functions, ratios and fractions universal? Compare HERA results to those from e⁺e⁻ annihilations.

John Loizi

Consistent with the universality of charm fragmentation fractions.

Half of $f(c \rightarrow D^*)$ is due to different in $f(c \rightarrow \Lambda_c)$, could this be due to a proton in the initial state? \rightarrow More data from HERA II may provide the answer.

$$F_{2 \text{ meas}}^{c\bar{c}}(x,Q^2) = \frac{\sigma_{\text{meas}}(ep \to D^*X)}{\sigma_{\text{theory}}(ep \to D^*X)} F_{2 \text{ theory}}^{c\bar{c}}(x,Q^2)$$

- Extraction of F_2^{cc} from measured D* meson cross sections to full phase space using consistent 'massive' NLO QCD scheme (HVQDIS program)
- Extrapolation factors (4.7 1.5) in p_T and η decreasing with Q². Sensitivity $p_T(D^*) > 1.5$ GeV and $|\eta(D^*)| < 1.5$.
- Uncertainties in extrapolation due to fragmentation, charm mass, PDF typically around 10% and less than 20%.

Extraction of F₂^{cc}

- Impact Parameter method. All tracks have $p_T > 0.5$ GeV
- Much larger acceptance than for D* mesons.
- Smaller extrapolation factors.
- For each track within a jet, plot the distance of closest approach (DCA) to the primary vertex in the r-φ plane.
- Heavy flavours have a large positive impact parameter.
- Light flavours have a small symmetric negative and positive impact parameter.
- \rightarrow 2 times smaller statistical errors Compared to D* measurements.

Extraction of F₂^{cc}

- Impact Parameter significance $S_i = \delta/\sigma(\delta)$
- 3 significance distributions:
- S_1 highest significance track
- S_2 2nd highest significnce track
- $S_3 3^{rd}$ highest significnce track

Subtraction from positive side reduces sensitivity to the resolution of light quarks

Lots of data, comparable methods.

 \rightarrow Gluon density visible. Good agreement with NLO QCD.

Contribution of F_2^{cc} can be as large as 30%.

Different methods of extraction agree.

Good description by NLO QCD calculation.

er

Extraction of F₂^{cc}

QCD calculations fit the data reasonably well.

NNLO calculations \rightarrow different from NLO in some regions.

At smallest x and low Q² MRST NLO and NNLO differ from CTEQ6HQ.

John L

Charm in DIS at HERA II

•HERA I data \rightarrow higher D* cross sections for e⁻p than for e⁺p running.

•Revisited at HERA I I \rightarrow ratio is 1.

Summary

• Charm results in reasonable agreement with pQCD.

•Areas of disagreement can be selected(e.g. D* + dijets) indicating the need for higher order corrections e.g. MC@NLO.

•There is evidence that charm fragmentation is universal in e^+e^- and ep.

•HERA errors small compared to theoretical uncertainties.

