Inclusive Measurements at low Q^2

- Introduction
- Low x dynamics
- Soft QCD region
- Experimental techniques
- \blacksquare F_L determination
- Summary

Victor Lendermann KIP, Universität Heidelberg

Victor Lendermann, *Inclusive Measurements at Low* Q^2

Victor Lendermann, *Inclusive Measurements at Low* Q^2

 $Low Q^2 \Longrightarrow Low x$ \rightarrow

dense gluon states search for saturation

Inclusive DIS at Low Q^2

photon exchange

boson virtuality
= resolution scale $Q^2 = -(l - l')^2$ fractional momentum
of struck quark $x = \frac{Q^2}{2p \cdot q}$ inelasticity $y = \frac{p \cdot q}{p \cdot l} \approx \frac{Q}{x}$

boson-proton cms energy

$$\mathbf{y} = rac{p \cdot q}{p \cdot l} pprox rac{Q^2}{xs}$$

 $\mathbf{W} = \sqrt{ys - Q^2 + m_p^2}$

low $x \iff$ high y, high W

Inclusive DIS at Low Q^2

photon exchange

boson virtuality
= resolution scale $Q^2 = -(l - l')^2$ fractional momentum
of struck quark $x = \frac{Q^2}{2p \cdot q}$ inelasticity $y = \frac{p \cdot q}{p \cdot l} \approx \frac{Q^2}{xs}$ boson-proton
cms energy $W = \sqrt{ys - Q^2 + m_p^2}$

Cross section:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) \right\} \qquad Y_+$$

at high y

$$Y_{+} = 1 + (1 - y)^2$$

Reduced cross section:

$$\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

Only in pQCD:

$$F_2^{\text{em}}(x, Q^2) = x \sum_i e_i^2 [q_i(x, Q^2) + \bar{q}_i(x, Q^2)]$$

Victor Lendermann, Inclusive Measurements at Low Q^2

F₂ Measurements in pQCD Region

- Scaling violations are well described by NLO DGLAP QCD fits
- No evidence for new dynamics at low x in inclusive data
- Precision: 2 3% in bulk region

Victor Lendermann, Inclusive Measurements at Low Q^2

Scaling Violations at Low X

PDFs for LHC

Victor Lendermann, Inclusive Measurements at Low Q^2

PDFs for LHC

Victor Lendermann, *Inclusive Measurements at Low* Q^2

Models for Low Q^2 Region

- Inspired by Regge approach Pomeron + Reggeon exchange Several models available
- Dipole models for low x region

Example: saturation model (Golec-Biernat, Wüsthoff) using $R_0(x) - x$ -dependent saturation scale = average gluon distance

13

$$Q^2 \sim p_{t,e}^2$$

$$\Rightarrow$$
 experimental challenge

For main detector: $Q^2 \gtrsim 2 \,\text{GeV}^2$

Experimental Techniques at Low Q^2

Experimental Techniques at Low Q^2

Experimental Techniques at Low Q^2

Victor Lendermann, *Inclusive Measurements at Low* Q^2

Photon Radiation from Lepton Line

q = l - l' - kModified kinematics Access lower Q² and higher x

Distinct topologies:

- ▶ Initial State Radiation (ISR) : $\vec{k} \parallel \vec{l}$
- Final State Radiation (FSR) : $\vec{k} \parallel \vec{l}'$
- **QED Compton (QEDC)** : $\vec{q} \parallel \vec{l}$

Untagged ISR Signature

$$\sum (E - P_z)_i < 2E_{e-\text{beam}}$$

 γp background rejected by BST

Victor Lendermann, Inclusive Measurements at Low Q^2

F2 in Shifted Vertex ISR

Equivalent to inclusive DIS at reduced *s*

$$Q^2 = xys$$

Victor Lendermann, Inclusive Measurements at Low Q^2

Inelastic QED Compton Events

- DIS background at low x: π^0 fakes γ
- Medium high x are measured
- Understanding of HFS at low W Use SOPHIA MC model

20

F2 Measurement in QEDC by H1

Good agreement with fixed target experiments

 $\mathcal{L}=9.25\,\text{pb}^{-1}\,\text{used}$

Current Results for Transition Region

Precision \sim 2–3% reached for inclusive data

Victor Lendermann, Inclusive Measurements at Low Q^2

Current Results for Transition Region

Victor Lendermann, Inclusive Measurements at Low Q²

23

x Dependence of F_2 at Low Q^2

 If saturation effects present, expect taming of rise of F₂ at low x

• Extract
$$\lambda = \frac{\partial \ln F_2}{\partial \ln x}$$
 at fixed Q^2

Derivative independent of x for $x < 10^{-2}$ *no evidence for saturation*

Extraction of $\lambda(Q^2)$

Combined Extraction of $\lambda(Q^2)$

Looking forward to the final results . . .

Victor Lendermann, Inclusive Measurements at Low Q^2

Data Are Described by Saturation Model

Fitted using 5 parameters GBW + DGLAP evolution

(J. Bartels, K. Golec-Biernat, H. Kowalski)

Victor Lendermann, Inclusive Measurements at Low Q^2

27

Data Are Described by Saturation Model

$$F_2 = F_2(\tau), \tau = Q^2 R_0^2(x) - Geometric scaling$$

(A.M. Stasto, K. Golec-Biernat, J. Kwieciński) Data manifest existence of saturation scale as used in saturation model Fitted using 5 parameters GBW + DGLAP evolution

(J. Bartels, K. Golec-Biernat, H. Kowalski)

28

Data Are Described by Saturation Model

$$F_2 = F_2(\tau), \tau = Q^2 R_0^2(x) - Geometric scaling$$

(A.M. Stasto, K. Golec-Biernat, J. Kwieciński) Data manifest existence of saturation scale as used in saturation model

Also describes
$$\frac{\sigma_{\text{diffDIS}}}{\sigma_{\text{DIS}}} = \text{const}$$

Very appealing

Victor Lendermann, Inclusive Measurements at Low Q^2

Fitted using 5 parameters GBW + DGLAP evolution

(J. Bartels, K. Golec-Biernat, H. Kowalski)

Saturation Region in Dipole Model

For pQCD Q² scales saturation region is beyond HERA reach

For $Q^2 \lesssim 1 - 2 \,\text{GeV}^2$ saturation model claims we see saturation

Appealing but not compelling

31

Critical corner – low Q² and low x
 Gluon becomes valence-like or even negative
 Large spread of calculations for gluon and F_L

Determination of F_L

$$\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

Data sensitive at highest y only

Direct measurement requires data at different $s \longrightarrow lower E_p$ runs

Indirect determination at high y

$$\frac{\partial \sigma_r}{\partial \ln y}\Big|_{Q^2} \approx \frac{\partial F_2}{\partial \ln y}\Big|_{Q^2} - \frac{2y^2(2-y)}{Y_+^2}F_L$$

Derivative dominated by F_L term at high y

Shape method

$$\sigma_{\rm fit} = \frac{cx^{-\lambda}}{Y_+} - \frac{y^2}{Y_+} F_L$$

Shape driven by kin. factor rathen than F_L

Shape Method vs. Derivative Method

Victor Lendermann, *Inclusive Measurements at Low* Q^2

 F_L for Fixed Q^2

 F_L at Fixed y = 0.75

- ▶ New constraints from low Q^2 data
- ▶ F_L spans 3 orders of magnitude in Q^2
- Basic agreement with NLO pQCD fits
- ▶ Good description by dipole model in the whole Q^2 range
- ▶ H1 non-negligible F_L at low $Q^2 \Longrightarrow positive g$

Direct Determination of F_L

Victor Lendermann, Inclusive Measurements at Low Q^2

Summary

- Inclusive data in pQCD region are well described by DGLAP Strongly rising gluon towards low x No clear sign for different dynamics, saturation ...
- Precision 2–3% reached at low–medium Q^2 Precise data in the whole *x* range are also important for the LHC
- $\begin{array}{l} \blacksquare \ F_2 = c \cdot x^{-\lambda(Q^2)} \ \text{at } x < 10^{-2} \ \text{for all } Q^2 \\ \lambda(Q^2) \ \text{compatible with pQCD at } Q^2 \gtrsim 3 \ \text{GeV}^2 \\ \text{At lower } Q^2 \ \text{transition to hadronic d.o.f. occurs, } \lambda \rightarrow 0.08 \end{array}$
- If $F_2 = F_2(\tau)$, $\tau = Q^2 R_0^2(x)$ Geometric scaling at $x < 10^{-2}$ for all Q^2
- F_L is important to pin down gluon at low Q^2 and low x F_L is described by pQCD fits at $Q^2 > 2 \text{ GeV}^2$ $F_L > 0$ also at $Q^2 < 1 \text{ GeV}^2$
- DIS- γp transition region is described by phenomenological models Dipole model describes both transition and pQCD region at low x: F_2 (incl. $F_2(\tau)$, $\lambda(Q^2)$), F_L , $\frac{\sigma_{\text{diffDIS}}}{\sigma_{\text{DIS}}}$ = const using a few parameters

Summary of Experimental Methods

38

- Special experimental approaches are required for low Q^2
 - Low Q^2 devices
 - Shifted vertex
 - Radiative events (ISR, QEDC)
 extend low Q² measurements towards higher x
- \blacksquare F_L large uncertainty at low Q^2 and low x
 - Direct extraction from ISR lacks statistics
 - Indirect methods at fixed high y = 0.75:
 - Derivative method
 - Shape method more precise
 - Best solution would be low E_p runs
- Looking forward to final data and combined results

Additional Information

ISR Event in H1 Detector

Additional experimental challenges Detector acceptance and calibration Backgrounds from event overlaps (DIS + BH, γp + BH, ISR + BH)

Preliminary Results: F2 in ISR

