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Motivations (1/3)

2

=R - F0)F(000)

d’o _ 2na

dxd0* O

with  f(»=2-  and Y, =1+ (1-y)]

The structure function F| is a basic Structure Function
which has to be measured.

The measurement is difficult and HERA experiments are

probably the best experiments which have ever was to
perform it.

It would be a text book measurement.



Physics motivations (2/3)

F_simply related to g, , the inclusive cross section of longitudinally

polarised photons :
QZ
F, = > |91
47 a

F_ gets its value from perturbative QCD,
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At low x, the gluon density dominates. F| is a clean probe of the gluon
distribution .

Measurement of F| would be an important input to QCD fits of parton
distributions and a (cf R. Thorne). 4



Motivations (3/3)

CTEQ and MRST do fit F,(x,Q?) data from H1 at
low x but F| is poorly constrained by present data.
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Direct measurement of F (Q?,x)
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Measure at the same (Q2,x)

reduced cross sections from
different beam energies, i.e.

different y.

Perform straight line fit of o,
to extract F, and F

F_ is very sensitive to small
relative shifts on cross
sections

~ 1.6
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Direct measurement of F, (Q?,x)

Requirements :

« At least two beam settings which overlap in the (Q?,x) plane

« Alarge y difference

« The highest possible y at low beam energies (error on F, ~ 1/y?)
* Enough luminosity

To have both measurements in the same part of the apparatus,
To access the largest vy,
Better to only reduce the proton beam energy
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Figure 2.3: The H1 tracking detectors,



460 GeV

E =

920 GeV

5=

E

50
40

[,A®D1,0

30

20
0
9

50

40
30

[,A®0].0

20




13.8 GeV

E.=

27.6 GeV

E. =

(@] (@)
gl ~

[,A®9],0

30

20

C o0~ ©

50
40

[,A®91,0

30

20

10



Why not using the radiative events?
etp—oety+X

We get radiative events fo free !

Need a huge statistics (~200 pb!)

[Krasny, Placzek, Spiesberger,1991]

However :
— For a fixed (Q?,x) bin, at different y,

do|

d= [nb| : 6. > 7 — 0.5mrad

D7 1GeV

15GeV? < Q* < 30 GeV?
06-10°<z<1.2-107°
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the overlap in the same part of the detector is quite small

— No access to very highy (E’, >3 GeV)
— Severe pile up of Bethe-Heitler events (e p—e€ p Y) in the gamma

detector [Favart, Maracek, 1996]

=P huge errors on F; ~ 50-100 %!
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Direct measurement of F, (Q?,x)

Present assumptions (to be tuned when Luminosity is
better known) :

E(GeV) 920 460
L(pb-1) 30 10

A possible option :

E(GeV) 920 460 575
L(pb-1) 30 5 35
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Systematic errors

F_is only sensitive to relative shifts of cross section. Errors
based on cumulated expertise in analysing F, data and

anticipation of BST performances.

® Correlated errors

— Energy of scattered electon : from 2% at 3 GeV to 0.2% at 30
GeV.

— Angle of scattered electron : 0.2 mrad in BST and 1 mrad
at ©, < 165°.

— Residual photoproduction background (from a fit on negative
tracks in positron run)

0.267-0.8 y + 0.6 y? aty >0.65

¢ Uncorrelated efficiencies:

electron identification, trigger, vertex, radiative corrections : 1%
13



Estimates of errors on F, (x,Q?)

« Fast simulations based on F, and F, parametrizations
from H1 QCD fits (2000)

 Two methods have been used :
— Analytic calculations (MK)
— Fast montecarlo (JF)

— Excellent agreement
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ERRORS IN PERCENT, Q2

~ 9.4 GEV2,

PROTON BEAM ENERGIES 920 vs 460 GeV

<X> 0.00023 |0.00026 |0.00030 0.00040
<Y> at 460 GeV 0.835 0.728 0.628 0.483
<FL> 0.303 0.293 0.283 0.266
STATISTICAL ERROR 7.0 9.9 13.1 15.8
SYST: 6.4 9.3 13.8 28.0
EFFICIENCIES
SYST: 13.0 4.0 1.0 0.0
GAMMA-P
SYST: 4.7 2.9 9.3 4.7
ELEC. ENERGY
SYST: 6.2 0.3 3.2 7.3
ELEC. ANGLE
SYST: 16.4 10.8 17.0 29.4
TOTAL
SYST+STAT 17.9 14.6 21.4 33.4
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Undirect determination of F| 7

H1 has invented three methods to determine F (not a
measurement) at fixed beam energies :

‘extrapolation’, ‘derivative’ and ‘shape’

The methods provide an indirect determination of F

somewhat model dependent (cf Robert Thorne) ancLi with
a modest precision (two to three sigmas).

20



The shape method is based on a simple parametrization of o, at fixed Q?
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Undirect determination of F;
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A new undirect determination of F, at lower proton beam
energy would provide an interesting cross check based
on quite different systematics.
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The Diffractive Longitudinal Structure Function FEI

By analogy with inclusive case,

d3geP—eXY - Dot 2 ‘}_ -r:r‘r'}['r
- R el =]
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where rTjr.'j — Fif'j = ,f-_l_ Ff‘i" and Yo =14+ (1-— Nk

Several different measurement possibilities:

e “Shape” method as in inclusive case:
...requires knowledge of 1z , dependence of Fj_r'-’, which is poorly constrained by theory

and complicated by meson effects, interference etc.

e Exploit intereference between transverse and longitudinal contributions leading to
modulation in A¢ between lepton and proton scattering planes.
... Current results (ZEUS) consistent with zero due to poor statistics and large systematics.

... Maybe interesting with VFPS?

e \arying vy at fixed t”f, 0, x, by changing /s promises model independent result.

P.Newman 23



F. P has never been
measured

F, P predicted from QCD fits
to be large at low B!

Inclusive diffraction cannot
be fully understood without
separating out F P
contribution.

—— F,C {from NLO QCD Fit)
S F:!D
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Results and Uncertainties for Q% = 12 GeV?Z2, 3 = 0.23

Y400 T Ounc | Opdiss SEL | 80 | M, | dvp Osyst | Ostat | Otot
0.5 —-0.7 0.0020 34 G 8 2 7 0 36 20 41
0.7 —-0.8 0.00186 19 G 3 2 5 G 22 17 28
0.8 —-0.9 0.0014 14 G B 1 2 13 21 13 25

Uncertainties correlated between beam energies:
o 0L = 0.2% (kinematic peak) ...2% (£’ = 3 GeV)
e 060" = 0.2 mrad
e Hadronic energy scale M ,, = 4% (as now)
e Photoproduction background d~p = 25% (as now)
e Proton dissociation corrections e"?l,c;i,_,_ = 6% (as now, assumed 100% correlated)

Uncorrelated uncertainty = 2.4%, mainly from acceptance corrections with RAPGAP

P.Newman



Encouraging result !

F. P extracted to 3 —4 ¢ in 3 bins

What about two bins of t with VFPS?

Xp F P
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Possible scenarii for a direct measurement of F

Combine 30 pb! at Ep = 920 GeV with data taken in the last couple
of months of HERA running at low proton beam energy(s):

) 15 pb™ at E = 460 GeV :

Estimated time (F.Willeke)):

3 weeks to tune the machine plus 10 weeks of data taking.
— 10 pb-! of good data.

More precision at x ~ 10-3. Good safety factor.

Would provide a first measurement of F P .

II) 7pb-'(— 5pb-') at Ep = 460 GeV

plus 5 pb-1 (— 3.5 pb™) at E = 575 GeV

Estimated time :

(3 + 3) weeks to tune HERA plus (5 + 2.5) weeks of data taking.

An excellent check of the systematics and extension of the x range.
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Conclusion

Based on the excellent performance of the HERA detectors

and on the cumulated expertise on systematic effects since
1992, a direct measurement of F, at x from 104 to 103 at the
5 sigmas level of precision can be reached by running HERA
for a few weeks at low proton beam energy(s).

It could also provide the first measurement of F P at the 3-4
sigmas level.

An attractive added value to the legacy of HERA at small x!

Be open minded and prepared for a final decision by end
2000.

28



	Direct measurement of the longitudinal structure functions at HERA
	Outlook
	Motivations                        (1/3)
	Physics motivations               (2/3)
	Direct measurement of FL(Q2,x)
	Direct measurement of FL(Q2,x)
	Why not using the radiative events?e + p ? e + ? + X
	Direct measurement of FL(Q2,x)
	Systematic errors
	Estimates of errors on FL(x,Q2)
	Undirect determination of FL ?
	Undirect determination of FL
	Possible scenarii for a direct measurement of FL
	Conclusion

