Direct measurement of the longitudinal structure functions at HERA

New Trends in HERA Physics 2005 Schloss Ringberg 6 October 2005

J.Feltesse

Outlook

- Motivation
- Feasibility of a direct measurement
- Undirect determination
- Additionnal benefits from running at low E_p
- A possible strategy and conclusion

Motivations

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{2\pi\alpha^{2}Y_{+}}{Q^{4}x} \left[F_{2}(x,Q^{2}) - f(y).F_{L}(x,Q^{2})\right]$$

with $f(y) = \frac{y^{2}}{Y_{+}}$ and $Y_{+} = \left[1 + (1 - y)^{2}\right]$

The structure function F_L is a basic Structure Function which has to be measured.

The measurement is difficult and HERA experiments are probably the best experiments which have ever was to perform it.

It would be a text book measurement.

Physics motivations

 F_L simply related to σ_L , the inclusive cross section of longitudinally polarised photons :

$$F_L = \left(\frac{Q^2}{4\pi^2\alpha}\right)\sigma_L$$

(2/3)

In QPM : $\sigma_L = 0$

 F_L gets its value from perturbative QCD,

In LO:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum e_q^2 (1 - \frac{x}{z}) zg \right]$$

At low x, the gluon density dominates. F_{L} is a clean probe of the gluon distribution .

Measurement of F_L would be an important input to QCD fits of parton distributions and α_s (cf R. Thorne).

Motivations

CTEQ and MRST do fit $F_2(x,Q^2)$ data from H1 at low x but F_L is poorly constrained by present data.

Measuring F_L at x from 10⁻⁴ to a few 10⁻³ would provide an additional constraint on gluon density for Higgs and W production at LHC

(3/3)

Direct measurement of $F_L(Q^2,x)$

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2 Y_{+}}{Q^4 x} \left[F_2(x,Q^2) - f(y) F_L(x,Q^2) \right] = \frac{2\pi\alpha^2 Y_{+}}{Q^4 x} \sigma_r$$

Measure at the same (Q2,x) reduced cross sections from different beam energies, i.e. different y.

Perform straight line fit of σ_{r} to extract F_{2} and F_{L}

F_L is very sensitive to small relative shifts on cross sections

Direct measurement of $F_L(Q^2,x)$

Requirements :

- At least two beam settings which overlap in the (Q²,x) plane
- A large y difference
- The highest possible y at low beam energies (error on $F_L \sim 1/y^2$)
- Enough luminosity

To have both measurements in the same part of the apparatus, To access the largest y, Better to only reduce the proton beam energy

Figure 3.3: The H1 tracking detectors.

E_p = 920 GeV

E_p= 460 GeV

E_e = 27.6 GeV

E_e= 13.8 GeV

10

Why not using the radiative events? $e + p \rightarrow e + \gamma + X$

- We get radiative events fo free !
- Need a huge statistics (~200 pb⁻¹) [Krasny, Placzek, Spiesberger,1991]
- However :
 - For a fixed (Q^2,x) bin, at different y,

the overlap in the same part of the detector is quite small

- No access to very high y (E'_e > 3 GeV)
- Severe pile up of Bethe-Heitler events (e p \rightarrow e p γ) in the gamma detector [Favart, Maracek, 1996]
- → huge errors on $F_L \sim 50-100 \%!$

Direct measurement of $F_L(Q^2,x)$

Present assumptions (to be tuned when Luminosity is better known) :

E _p (GeV)	920	460
L(pb ⁻¹)	30	10

A possible option :

 $E_p(GeV)$ 920460575 $L(pb^{-1})$ 3053.5

Systematic errors

- F_L is only sensitive to relative shifts of cross section. Errors based on cumulated expertise in analysing F_2 data and anticipation of BST performances.
- Correlated errors
 - Energy of scattered electon : from 2% at 3 GeV to 0.2% at 30 GeV.
 - Angle of scattered electron : 0.2 mrad in BST and 1 mrad at $\Theta_{\rm e}$ < 165°.
 - Residual photoproduction background (from a fit on negative tracks in positron run)
 0.267-0.8 y + 0.6 y² at y >0.65
- Uncorrelated efficiencies:

electron identification, trigger, vertex, radiative corrections : 1%

Estimates of errors on $F_L(x,Q^2)$

 Fast simulations based on F₂ and F_L parametrizations from H1 QCD fits (2000)

- Two methods have been used :
 - Analytic calculations (MK)
 - Fast montecarlo (JF)
- \rightarrow Excellent agreement

<x></x>	0.00023	0.00026	0.00030	0.00040	
<y> at 460 GeV</y>	0.835	0.728	0.628	0.483	
<fl></fl>	0.303	0.293	0.283	0.266	
STATISTICAL ERROR	7.0	9.9	13.1	15.8	
SYST:	6.4	9.3	13.8	28.0	
EFFICIENCIES					
SYST:	13.0	4.6	1.0	0.0	
GAMMA-P					
SYST:	4.7	2.9	9.3	4.7	
ELEC. ENERGY					
SYST:	6.2	0.3	3.2	7.5	
ELEC. ANGLE					
SYST:	16.4	10.8	17.0	29.4	
TOTAL					
SYST+STAT	17.9	14.6	21.4	33.4	

920 x 27.5 vs 460 x 27.5

920 x 27.5 vs 920 x 13.8

30 pb-1, Ep=920 GeV 10 pb-1, Ep=460 GeV

5 pb⁻¹ at E_p = 460 GeV and 3.5 pb⁻¹ at E_p = 575 GeV

H1 has invented three methods to determine $F_L(not a measurement)$ at fixed beam energies :

'extrapolation', 'derivative' and 'shape'

The methods provide an indirect determination of F_L somewhat model dependent (cf Robert Thorne) and with a modest precision (two to three sigmas).

The shape method is based on a simple parametrization of σ_r at fixed Q²

21

Undirect determination of F_L

A new undirect determination of F_L at lower proton beam energy would provide an interesting cross check based on quite different systematics.

The Diffractive Longitudinal Structure Function F_L^D

By analogy with inclusive case,

$$\frac{d^3 \sigma^{e_{\mathcal{P}} \to e_X Y}}{dx_{\mathbb{I\!P}} d\beta dQ^2} = \frac{2\pi\alpha^2}{\beta Q^4} \cdot Y_+ \cdot \sigma_r^D(x_{\mathbb{I\!P}}, x, Q^2)$$

where
$$\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D$$
 and $Y_+ = 1 + (1-y)^2$

Several different measurement possibilities:

• "Shape" method as in inclusive case:

... requires knowledge of $x_{I\!\!P}$ dependence of F_2^D , which is poorly constrained by theory and complicated by meson effects, interference etc.

- Exploit intereference between transverse and longitudinal contributions leading to modulation in $\Delta\phi$ between lepton and proton scattering planes.
 - ... Current results (ZEUS) consistent with zero due to poor statistics and large systematics.
 - ... Maybe interesting with VFPS?
- Varying y at fixed $Q^2, \beta, x_{\rm I\!P}$ by changing \sqrt{s} promises model independent result.

F_L^D has never been measured

 F_L^D predicted from QCD fits to be large at low β !

Inclusive diffraction cannot be fully understood without separating out F_L^D contribution.

Results and Uncertainties for $Q^2=12~{ m GeV^2}$, eta=0.23

y_{400}	$x_{I\!\!P}$	$\delta_{ m unc}$	$\delta_{ m pdiss}$	$\delta E'_e$	$\delta \theta_e'$	δM_X	$\delta \gamma p$	$\delta_{ m syst}$	$\delta_{ m stat}$	$\delta_{ m tot}$
0.5 - 0.7	0.0020	34	6	8	2	7	0	36	20	41
0.7 - 0.8	0.0016	19	6	3	2	5	6	22	17	28
0.8 - 0.9	0.0014	14	6	6	1	2	13	21	13	25

Uncertainties correlated between beam energies:

- $\delta E'_e = 0.2\%$ (kinematic peak) ... 2% ($E'_e = 3~{
 m GeV}$)
- $\delta \theta'_e = 0.2 \text{ mrad}$
- Hadronic energy scale $\delta M_{_X} = 4\%$ (as now)
- Photoproduction background $\delta\gamma p=25\%$ (as now)
- Proton dissociation corrections $\delta_{
 m pdiss}=6\%$ (as now, assumed 100% correlated)

Uncorrelated uncertainty = 2.4%, mainly from acceptance corrections with RAPGAP

What about two bins of t with VFPS?

Possible scenarii for a direct measurement of F_L

Combine 30 pb⁻¹ at Ep = 920 GeV with data taken in the last couple of months of HERA running at low proton beam energy(s):

I) 15 pb⁻¹ at E_p= 460 GeV :

Estimated time (F.Willeke)):

3 weeks to tune the machine plus 10 weeks of data taking.

 \rightarrow 10 pb⁻¹ of good data.

More precision at x ~ 10^{-3} . Good safety factor.

Would provide a first measurement of $\mathsf{F}_{\mathsf{L}}{}^{\mathsf{D}}$.

II) 7pb⁻¹(\rightarrow 5pb⁻¹) at Ep = 460 GeV plus 5 pb-1 (\rightarrow 3.5 pb⁻¹) at E_p= 575 GeV Estimated time :

(3 + 3) weeks to tune HERA plus (5 + 2.5) weeks of data taking. An excellent check of the systematics and extension of the x range.

Conclusion

Based on the excellent performance of the HERA detectors and on the cumulated expertise on systematic effects since 1992, a direct measurement of F_L at x from 10⁻⁴ to 10⁻³ at the 5 sigmas level of precision can be reached by running HERA for a few weeks at low proton beam energy(s).

It could also provide the first measurement of F_L^D at the 3-4 sigmas level.

An attractive added value to the legacy of HERA at small x!

Be open minded and prepared for a final decision by end 2006.