Heavy flavour production in high energy

ep collisions

Igor Katkov

Skobeltsyn Institute of Nuclear Physics Moscow State University Ó

7FUS

12th High Energy Physics International Conference on Quantum Chromodynamics Montpellier - France, 4–9 July 2005

- Introduction
- Inelastic J/ψ production
- Charm fragmentation
- Charm with jets

- Beauty dijets and dimuons
- Summary and Outlook

Introduction

- H1 and ZEUS @ HERA collider: 920 (820) GeV p on 27.5 GeV e^\pm
- Hard scale: $m_Q \gg \Lambda_{QCD} \Rightarrow$ perturbative treatment
- Factorisation in perturbative QCD: $\sigma = parton \ distributions \otimes hard \ scattering \otimes fragmentation/hadronisation$
- Test pQCD, provide experimental input for parton distributions, fragmentation functions

40 p_T^{* 2} (GeV²)

kt-fact.&CASCADE: CSM

I. Katkov

QCD05, MONTPELLIER, 4–9 JULY 2005

Heavy flavour production in high energy *ep* collisions

3

Fragmentation ratios/fractions

I. Katkov

Heavy flavour production in high energy ep collisions

QCD05, MONTPELLIER, 4–9 JULY 2005

5

Fragmentation ratios/fractions

	Neutral to charged <i>D</i> -meson ratio $R_{u/d} = (cu)/(cd)$
ZEUS (γp)	$1.100 \pm 0.078(\text{stat.})^{+0.038}_{-0.061}(\text{syst.})^{+0.047}_{-0.049}(\text{br.})$
H1 (DIS)	1.26 ± 0.20 (stat.) ± 0.11 (syst.) ± 0.04 (br. \oplus theory)
combined e^+e^- data	$1.020 \pm 0.069 (stat. \oplus syst.)^{+0.045}_{-0.047} (br.)$

 $R_{u/d} \sim 1$: u and d quarks produced equally in charm fragmentation (isospin invariance)

	Strangeness-suppression factor $\gamma_s = (2 cs)/(cd + cu)$
ZEUS (γp)	$0.257 \pm 0.024 (stat.)^{+0.013}_{-0.016} (syst.)^{+0.078}_{-0.049} (br.)$
ZEUS 96-97	$0.27 \pm 0.04 (stat.)^{+0.02}_{-0.03} (syst.) \pm 0.07 (br.)$
H1 (DIS)	$0.36 \pm 0.10(ext{stat.}) \pm 0.01(ext{syst.}) \pm 0.08(ext{br.} \oplus ext{theory})$
combined e^+e^- data	$0.259 \pm 0.023 (stat. \oplus syst.)^{+0.087}_{-0.052} (br.)$

s-quark production suppressed by factor 3–4 in c-fragmentation

		Fraction of charged vector D mesons $P_v^d = (V)/(V + PS)$	
ZEUS (γp) 0.566 ± 0.025(stat.) ^{+0.007} _{-0.022} (syst.) ^{+0.022} _{-0.023} (br.)		$0.566 \pm 0.025 (stat.)^{+0.007}_{-0.022} (syst.)^{+0.022}_{-0.023} (br.)$	
	H1 (DIS) $0.693 \pm 0.045(\text{stat.}) \pm 0.004(\text{syst.}) \pm 0.009(\text{br})$	$0.693\pm0.045(ext{stat.})\pm0.004(ext{syst.})\pm0.009(ext{br.}\oplus ext{theory})$	
	combined e^+e^- data	$0.614 \pm 0.019 (ext{stat.} \oplus ext{syst.})^{+0.023}_{-0.025} (ext{br.})$	

Value not consistent with naive spin counting (0.75)

Charm fragmentation fractions

Fraction of c quarks hadronising as a hadron:

$$f(c \to D, \Lambda_c) = \frac{N(D, \Lambda_c)}{N(c)} = \frac{\sigma(D, \Lambda_c)}{\sum_{\text{all}} \sigma(D, 1.14 \cdot \Lambda_c)}$$

	ZEUS (γp)	Combined	H1 (DIS)
	$p_T(D, {\sf \Lambda}_c) >$ 3.8 GeV	e^+e^- data	
	$ \eta(D, \Lambda_c) < 1.6$		
	stat. syst. br.	stat.⊕syst. br.	total
$f(c \rightarrow D^+)$	$0.217 \pm 0.014 \begin{array}{c} +0.013 + 0.014 \\ -0.005 - 0.016 \end{array}$	$0.226\ \pm 0.010\ {}^{+0.016}_{-0.014}$	0.203 ± 0.026
$f(c \rightarrow D^0)$	$0.523 \pm 0.021 \begin{array}{c} +0.018 + 0.022 \\ -0.017 - 0.032 \end{array}$	$0.557 \ \pm 0.023 \ \substack{+0.014 \\ -0.013}$	0.560 ± 0.046
$f(c \to D_s^+)$	$0.095 \pm 0.008 \ \substack{+0.005 + 0.026 \\ -0.005 - 0.017}$	$0.101 \ \pm 0.009 \ \ {}^{+0.034}_{-0.020}$	0.151 ± 0.055
$f(c \to \Lambda_c^+)$	$0.144 \pm 0.022 \begin{array}{c} +0.013 + 0.037 \\ -0.022 - 0.025 \end{array}$	$0.076 \ \pm 0.007 \ \begin{array}{c} +0.027 \\ -0.016 \end{array}$	
$f(c \to D^{*+})$	$0.200 \pm 0.009 {}^{+0.008 +0.008}_{-0.006 -0.012}$	$0.238\ \pm 0.007\ \substack{+0.003\\-0.003}$	0.263 ± 0.032

charm fragmentation fractions are universal

Competitive precision everywhere

Fragmentation function in DIS

- Study parametrisation of the fractional transfer of c quark energy/momentum (z) to a D-meson
- $2 < Q^2 < 100 \,\text{GeV}^2, 0.05 < y < 0.7, p_T(D^*) > 1.5 \,\text{GeV}, |\eta(D^*)| < 1.5, D^* \to K\pi\pi_s$
- Hemisphere method: c-quark energy approximated by energy of a hemisphere of D-meson, $z_{hem} = (E + p_L)_{D^*} / \sum_{hem} (E + p_L)$, γp -frame, analogy to e^+e^-

I. Katkov

Heavy quarks with jets

• QCD NLO calculations (problem of many scales):

– Massive scheme: no p_T/m_Q logs resummation, valid for $0 \le p_T \lesssim \text{few} \times m_Q$ three active partons, no heavy quark excitation

– Massless scheme: $\alpha_s \ln(p_T^2/m_Q^2)$ terms resummed, valid for $p_T \gtrsim \text{few} \times m_Q$, breaks down for $p_T \lesssim m_Q$, up to five active partons, fragmentation into massive hadrons after hard scatter

- Combined schemes

Inclusive charm jets (photoproduction)

 $\mathcal{L} = 79 \text{ pb}^{-1}$ $Q^2 < 1 \text{ GeV}^2$ 130 < W < 280 GeV $p_T^{D^*} > 3 \text{ GeV}, |\eta^{D^*}| < 1.5$ k_T clust. algorithm $E_T^{\text{jet}} > 6 \text{ GeV}$ $-1.5 < \eta^{\text{jet}} < 2.4$ $D^* - \text{tag}$: $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.6$

Massive: FMNR Massless: Heinrich, Kniehl (only untagged jets)

- For all E_T : shapes described by NLO QCD, normalisation (almost) described by upper bound
- No excess in forward as for inclusive jets

Charm jet correlations (photoproduction)

 $E_T^{jet1} > 7, E_T^{jet2} > 6 \, \text{GeV}$ • $x_{\gamma}^{\text{obs}} = \sum_{\text{jets}} E_T \exp^{-\eta} / (2yE_e)$: fraction of photon energy in hard interaction • $\Delta \phi^{jj}$ = π , $(p_T^{jj})^2$ for lowest order 2 collinear in calculations \Rightarrow correlations sensitive to HO corrections

 Large deviations from NLO QCD at low $\Delta \phi^{jj}$ and high $(p_T^{jj})^2$ enhanced for resolvedenriched ($x_{\gamma}^{\text{obs}} < 0.75$) sample; HERWIG describes data

 sensitivity to even higher order corrections

I. Katkov

QCD05, MONTPELLIER, 4–9 JULY 2005

Shape of jets in charm photoproduction

• Insight into hard scatter process using jet structure variables: jet shapes initiated by quarks and gluons are expected to be different

$$\begin{split} \psi(r) &= p_T^{\text{jet}}(r) / p_T^{\text{jet}}(r = R(=1)), r = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} \\ \langle \psi(r) \rangle &= \frac{1}{N_{\text{jets}}} \Sigma_{\text{event sample}} \psi(r) \end{split}$$

- Two photoproduction dijet samples (with and w/o charm-tag)
- Charm-tag using semi-leptonic decay muon with high p_T

$\mathcal{L}=48\mathrm{pb}^{-1}$					
	Dijet+muon	Dijet			
Q^2	$< 1 \text{GeV}^2$	$< 0.01 { m GeV^2}$			
y	0.20.8	0.30.65			
inclusive kt cluster algorithm					
p_T^{jet}	$p_T^{\text{jet}} > 7 \text{ and } > 6 \text{ GeV}$				
$ \eta^{jet} $	< 1.7				
p_T^μ	> 2.5 GeV				

Shape of jets in charm photoproduction

- Tagging technique: 2D fit of p_T^{rel} (p_T w.r.t. closest jet) and δ (track impact parameter) to PYTHIA distributions for uds, c and b as if we wanted beauty but invert p_T^{rel} cut
- $p_T^{\text{rel}} < 1 \text{ GeV} \Rightarrow \text{charm enriched sample:}$ $f_c = 73 \pm 3\%$

QCD05, MONTPELLIER, 4–9 JULY 2005

I. Katkov

Shape of jets in charm photoproduction

- Charm sample: jet w/o c-tag enters distributions
- PYTHIA direct: mainly quark jets, PYTHIA resolved: mainly gluon jets
- Recall: charm dijet angular dist. in photoproduction at low x_{γ}^{obs} well described by PYTHIA (charm excitation)
- DATA, dijet sample w/o c-tag: different shapes for low and high x_{γ}^{obs} , well described by PYTHIA for any x_{γ}^{obs}
- DATA, dijet sample with c-tag: similar shapes for low and high x_{γ}^{obs} , not described by PYTHIA at low x_{γ}^{obs} (lack of gluon jets in DATA)

I. Katkov

• Inclusive lifetime tagging: for heavy quarks tracks have high significance $S = \delta/\sigma(\delta)$

• Significance distributions: S_i - significance of track with *i* th highest abs. significance

• Fractions of c, b and uds from simultaneous fit to at least S_1 and S_2 (and total number of events); very high acceptances

• Extand measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ using S_1,S_2,S_3 to low Q^2

• $3.5 \le Q^2 \le 60 \text{ GeV}^2$, $0.000197 \le x \le 0.005$

• New $F_2^{c\bar{c}}$ data in agreement with other measurement techniques (ones with much higher extrapolation)

I. Katkov

- Inclusive lifetime tagging: first measurement of $F_2^{b\bar{b}}$
- No evidence for large excess of b compared with NLO "massive \otimes massless" (VFNS) QCD

• In this kinematic range charm and beauty cross sections are on average 22% and 0.8% of total ep cross section

I. Katkov

Beauty and charm with dijets (PHP)

- Inclusive lifetime tagging enables a purely inclusive measurement of charm and beauty dijets (w/o requirement of hight p_T muon \Rightarrow reduced extrapolation)
- H1 99/00 e^+ data: $Q^2 \sim 0~{\rm GeV^2},~0.15 < y < 0.8,~p_T^{\rm jet} > 11(8)~{\rm GeV},~-0.88 < \eta^{\rm jet} < 1.3$
- Beauty: FMNR (QCD NLO, massive) below data for jets in forward region

Beauty with di-muons

I. Katkov

Beauty with di-muons

- Acceptance down to very low p_T^{μ} (*B* mesons "at rest") \Rightarrow low extrapolation
- Almost full rapidity coverage by μ -detectors \Rightarrow large η^{μ} range $(-2 \cdots + 2.5)$
- Direct measurement of $b\bar{b}$ correlation $\Delta \phi^{\mu\mu}$ (NLO predictions coming soon)
- $\sigma_{tot}(ep \rightarrow b\bar{b}X@\sqrt{s} = 318) = 16.1 \pm 1.8(stat.)^{+5.3}_{-4.8}(syst.) \text{ nb}$ NLO QCD (FMNR(PHP)+HVQDIS(DIS)): $6.8^{+3.0}_{-1.7}$ nb

Summary

- More tests of different aspects of QCD in charm and beauty production processes
- NLO QCD calculations (where available) are in general agreement with data
- Good understanding of "standard" physics is vital for searches of new phyiscs also at future colliders

Outlook

HERA I (1993–2000): \mathcal{L} \sim 193 pb^{-1} delivered; HERA IT (from 2002 on): increased rate, polarised beams, upgraded detectors, $\mathcal{L} \sim 187 \, \mathrm{pb}^{-1}$ delivered

New results are expected soon

ZEUS 03-04 (prel.) e^{*}p 40 pb

0.155

0.16

0.165

Wrong Charge

ZEUS

0.15

Combinations

600

500

400

200 100

0.135

0.14

0.145