Warsaw PHOTON2005

September 1st, 2005

Charm production at HERA

(nisq2, birbsM ab smonotuA babisrovinU) ansrdmaZ lounaM

On Behalf of the ZEUS and H1 Collaborations

- Introduction
- \rightarrow Charm production in ep collisions
- \rightarrow Perturbative QCD calculations for heavy flavours
- Experimental results
- \rightarrow Cross sections and QCD comparison
- \rightarrow Fragmentation aspects
- Summary

7

 \Rightarrow direct processes dominate, in photoproduction resolved play significant role

 $\sigma = \operatorname{proton} \operatorname{PDF} \otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes \operatorname{photon} \operatorname{PDF} \otimes \operatorname{fragmentation}$ **Factorisation**

Warsaw PHOTON2005

* $m_{
m c}$ large \Rightarrow useful scale pQCD : reliable predictions

 \Rightarrow charm production sensitive to these pieces

* Cross section is directly sensitive to the gluon density in the proton

* Fragmentation is assumed to be universal

NLO calculations are performed in several schemes : massive, massless, combined

"WYZZIAE" APPROACH

- Fixed order calculation in α_s , with $m_Q \neq 0 \Rightarrow$
- \rightarrow heavy quark is NOT part of the structure functions
- → Proton : 3 active light flavours
- Quark (+gluon) densities obtained according to DGLAP evolution
- HQ produced only dynamically; reliable at $p_T \sim m_Q$
- (when $\log(p_2^2/m_Q^2)$ terms sufficiently small)
- **SIU** :(himS+sirreH) **SIUQVH**, $q\gamma$:(hs 1s solutions) **ANNA** : solution (hs Codes : FMNA (Frixione et al.): γp , HvQDIS (Harris-Smith): DIS
- All orders in α_s , with $m_Q = 0 \Rightarrow$ heavy quark is an active flavour in the proton "MASSLESS" APPROACH
- HQ produced also by new processes ("flavour excitation"); reliable $p_T \gg m_Q$

Photoproduction of $D^{*\pm}$ mesons at HERA

- Differential distributions are measured and compared to theoretical predictions in different schemes : 'massless'' NLO and ''massless'' NLO
- Shape of $d\sigma/dW$ described by all, but both massive and massless NLO fail in describing shape of $d\sigma/d\eta(D^*)$
- Theories have large uncertainties
- Measurements are able to constrain

and the section is the section of the section $\pm^{*} U$

- ("essociation in 'angular distance") • D^* + jet; $E_T^{jet} > 6 \ GeV$: additional scale; jet parton
- ssəlssem bne əvissem OJN estimates and the second seco
- \rightarrow D* + associated jet : massive Calculations available :
- $\rightarrow D^* +$ other jets : massive/massless

SEUS

tə
į bəggst- * U

Untagged jets

 $D^{*\pm}$ photoproduction : D^* jet correlations

 D^*+ (untagged)jet \Rightarrow test higher order QCD contributions, (i.e. gluon radiation) $\gamma p : \gamma$ and parton collide head-on \Rightarrow if no gluon emission, $2 \rightarrow 2$ process particles in the final state are back to back

sre we sensitive to gluon radiation?

[°] ()∮(D*, jet) [°]

50 40 60 80 100 120 140 160 180

$\mathbf{D}^{\pm\pm}$ photoproduction : dijet correlations

• Sample divided in babivib signal •

direct-enriched : $x^{obs}_{\gamma} > 0.75$ tesolved -enriched : $x^{obs}_{\gamma} < 0.75$

- Comparison to QCD
- → LO + parton shower MC
- \rightarrow NLO QCD + had. corrections deviates from data at low $\Delta \phi^{j,j}$

⇒ higher order calculations/ NLO + parton shower needed

8

Fragmentation of Charm Quark : Fractions and Ratios

- (meinshown noited of the state of the second (no pQCD description, only phenomenological models)

• fragmentation $c \rightarrow D$ is a long distant effect

snoitsert noitstnemgart At HERA we measure

 \rightarrow fraction of the quark's momentum carried by the heavy hadron snoitonul noitstnomgarl

Fragmentation Fractions

- ground states : D^0 , $D^{*\pm}$, D^{\pm} , D^{\pm} , D^{\pm} and Λ^{\pm} • HERA has measured in $\gamma\gamma$ and DIS inclusive cross sections for all the charm
- From cross sections, fragmentation fractions can be calculated
- $f(c
 ightarrow D, \Lambda_c) = \sigma(D, \Lambda_c) / \sum_{all \ charm \ ground \ states} \sigma_i \sigma_i$

Fragmentation of Charm Quark : Fractions and Ratios

J0

Gambrana. M

7

• signal to background ratio improved significantly

and their decay (secondary) \Rightarrow hadrons separated from combinatorial background lifetime of D-mesons leads to spacial separation between their production (primary) • charm tagging : reconstruction of secondary vertex

Fragmentation of Charm Quark : fractions and ratios (signals in DIS)

Gambrana. M

Warsaw PHOTON2005

September 1st, 2005

Ratios

There also other important questions concerning charm hadronisation

- Are u and d quarks produced equally in charm events $? \rightarrow \mathbf{R}_{u/d} = c\overline{u}/c\overline{d}$ (Measures the rate of neutral to charged D meson production)
- their dressed masses 1, due to smallness of the bare u, d quark masses compared to \Rightarrow Expected to be $\sim 1,$ due to smallness of the bare u, d quark masses
- ullet \leftarrow \colon noises and u is the s -quark production suppression \colon \to
- strangeness supression factor $\gamma_s = 2c\bar{s}/(c\bar{u} + cd)$ $\Rightarrow D_s^{\pm}$ expected to be less frequently produced than D^0 and D^{\pm} , due to higher
- **bare** *s* quark mass • What is the fraction of D mesons produced in a vector state? $\rightarrow P_V = V/(V + PS)$ \Rightarrow Expected to be 3/4, by naive spin counting

Fragmentation of Charm Quark : Fragmentation Ratios (results)

 \Rightarrow In agreement with each other, expectation and world average, but naive spin counting not quite correct $(P_V
eq 3/4)$!

 $rac{Q_{\mathfrak{I}} = d \cdot (d+\overline{A})}{Z_{\mathfrak{I}} = d \cdot (d+\overline{A})} = \frac{Q_{\mathfrak{I}} + Q_{\mathfrak{I}}}{Z_{\mathfrak{I}}}$

podis Misl

 $^* G$ guinistnos teľ \sim Jet containing D^*

Fragmentation of charm quark : fragmentation function

• Fragmentation functions used to parametrise the energy transfer $Q \Rightarrow HADRON$

• Described by phenomenological models \Rightarrow parameters can be fitted to data

• Tunning of parameters needed to reduce theoretical uncertainties

"reference of the second secon

 $\rightarrow \text{in } e^+e^- \rightarrow e\overline{e} : E(e) = \sqrt[]{s}/2, \text{ so natural choice } z = \frac{E(e)}{E(D^*)} = \frac{2 \cdot E(D^*)}{2 \cdot E(D^*)}$

bother in the probability of th

bohtəMərəhqsiməH

⇒ can divide the event in two hemispheres in γp frame the $c\overline{c}$ pair is balanced in p_T

* Ω guinistnoo orotheria in hemisphere containing D^*

$$\frac{\sum_{y \in w} (E+b)}{(E+b)^{D}} = \frac{\sum_{y \in w} (E+b)}{(E+b)}$$

The normalized distribution in z is what we call fragmentation function

SI

Fragmentation of charm quark : fragmentation function

• Theoretical normalized cross section $\frac{1}{\sigma} \frac{d\sigma}{dz}$ PYTHIA/RAPGAP + fragmentation model Peterson

$$\sum_{t=1}^{1-\lfloor (z(z-t)/3 - z/t-t)z \rfloor} \sim (z)f$$

$$(z-1)_{lpha} z \sim (z) f$$

 Fit theoretical prediction to data yields best values of ε, α parameters (in the used MC model)

$$(\mathfrak{i}\mathfrak{s}\mathfrak{l})_{00.0-}^{+0.004} (\mathfrak{h}\mathfrak{s}\mathfrak{m}) \mathfrak{s} = 0.030_{-0.005}^{+0.004} (\mathfrak{h}\mathfrak{s}\mathfrak{m})$$

(19į)
$${}^{3.0+}_{6.0-}$$
č.4 = ω (m9d) ${}^{9.0+}_{0.0-}$ e.č = ω

⇒ difference between the two methods may indicate inadequacies in MC description of hadronic final states in charm events

9I

Fragmentation of charm quark : fragmentation function

Comparison z distribution at HERA with e^+e^- experiments

 \Rightarrow although different observable definitions, spectra similar shape (universality)

- Description of charm cross sections by QCD good in general,
- New measurements : jets ... give more details of final state/event kinematics \rightarrow Charm γp and jets showing the need for higher order calculations theoretical developments needed (MC@NLO...)
- Charm fragmentation fractions/ratios and fragmentation function measured
- → accurate measurements : HERA errors competitive
- ightarrow Evidence that charm fragmentation is universal in e^+e^- and ep

8I