Inclusive Exploration of Proton Structure and QCD Dynamics

Uta Stösslein (DESY) on behalf of the H1 and ZEUS Collaborations

I I I I III

PHOTON2005, Warsaw, Poland, August 31th - September 3rd, 2005

Deep inelastic scattering kinematics

Neutral Current (NC) interactions

At HERA : NC : kinematics over-constrained $(E_e, \theta_e \text{ and/or } E_{jet}, \theta_{jet})$ CC : v escapes detection kinematics from E_{jet}, θ_{jet} Q² = -q² : resolving power of the exchanged boson ~1/√Q²

- \rightarrow 'DIS' : Q² >> M²_{proton}
- → snapshot of proton structure
- x = Q²/2Pq : fraction of proton momentum carried by struck quark (Bjorken '68)
- y = Pq/Pk : fraction of lepton momentum carried by the exchange (inelasticity)

DIS structure functions

$$\begin{split} & \mathsf{NC} \quad \frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \, \mathrm{d}Q^2} \; = \; \frac{2\pi\alpha^2}{xQ^4} \, \phi_{NC}^{\pm} \left(1 + \Delta_{NC}^{\pm, weak}\right), \\ & \mathrm{with} \quad \phi_{NC}^{\pm} \; = \; Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \,, \\ & \left[F_2, F_2^{\gamma Z}, F_2^Z\right] = x \sum_q [e_q^2, 2e_q v_q, v_q^2 + a_q^2] \{q + \overline{q}\} \\ & \left[xF_3^{\gamma Z}, xF_3^Z\right] = 2x \sum_q [e_q a_q, v_q a_q] \{q - \overline{q}\} = 2x \sum_{q=u,d} [e_q a_q, v_q a_q] q_v \end{split}$$

below bottom threshold

$$\begin{array}{rcl} xU &=& x(u+c)\\ x\overline{U} &=& x(\overline{u}+\overline{c})\\ xD &=& x(d+s)\\ x\overline{D} &=& x(\overline{d}+\overline{s}) \end{array}$$

valence guarks

$$xu_v = x\left(U - \overline{U}\right)$$
$$xd_v = x\left(D - \overline{D}\right)$$

$$\begin{array}{lll} & {\color{black} {C}} {C} & \frac{\mathrm{d}^2 \sigma_{CC}^{\pm}}{\mathrm{d}x \; \mathrm{d}Q^2} \; = \; \frac{G_F^2}{2\pi x} \left[\frac{M_W^2}{Q^2 + M_W^2} \right]^2 \; \phi_{CC}^{\pm} \left(1 + \Delta_{CC}^{\pm, weak} \right) \\ & \text{with} & \phi_{CC}^{\pm} \; = \; \frac{1}{2} (Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm}) \; , \qquad W_2^+ = x \big(\overline{U} + D \big) \; , \; \; x W_3^+ = x \big(D - \overline{U} \big) \\ & \phi_{CC}^+ = x \overline{U} + (1 - y)^2 x D \; , \quad \phi_{CC}^- = x U + (1 - y)^2 x \overline{D} \quad W_2^- = x (U + \overline{D}) \; , \; \; x W_3^- = x (U - \overline{D}) \\ & \end{array}$$

What HERA DIS data taught us on F2^{em}

e.m. structure of the proton known to few % in a large area of x and Q^2

Reduced charged current cross sections

HERA Charged Current

$$\sigma$$
 (e+p) ~ x (u+c) + (1-y²) x (d+s)

HERA can disentangle parton distributions

at large Q² and large x > 0.01 within *single* experiments, independently of nuclear corrections and free of higher twists and isospin assumptions (measure *d* of the proton directly)

Unfolding PDFs using CC and NC cross sections

E.g. ZEUS NLO QCD fit [EPJC42(2005)1]

all HERA-I ZEUS incl. NC/CC e ⁺ /e ⁻ (94-00)	
ZEUS inclusive jets in DIS (96-97)	
ZEUS dijets in photoproduction (96-97)	
Parameterisation:	
PDF	Param. at $Q_0^2 = 7 \text{ GeV}^2$
u-val. (xu _v)	A _{uv} x ^{b_{uv}} (1-x) ^{c_{uv}} (1+d _{uv} x)
d-val. (xd _v)	A _{dv} x ^{b_{dv}} (1-x) ^{c_{dv}} (1+d _{dv} x)
total sea (xS)	A _S x ^{bs} (1-x) ^{cs}
gluon (xg)	A _g x ^{bg} (1-x) ^{cg} (1+d _g x)
dbar-ubar (x∆)	A _∆ x ^b ∆ (1-x) ^c ∆

Constraints:

* momentum and quark number sum rules

- × low-x behaviour of u_v and d_v set equal
- * $\boldsymbol{\Delta}$ set consistent with Gottfried sum and DY

▶11 free parameters in total

•heavy quarks treated in variable flavour number scheme of Thorne and Roberts

uncertainties evaluated using Offset Method

Sea quarks and gluon

- strong improvement observed from using ep jet data
- experimental uncertainties in the range of 2%
- both a_s values have an additional 'scale' uncertainty of 0.005 (4.3%) which reflects an *ad hoc* approach to cover beyond NLO effects
- → precision of HERA data call for NNLO QCD analyses
- → NNLO calculation now available, thanks S.Moch, J.A.M. Vermaseren, A.Vogt [hep-ph/0403192 & 0404111]
- → deuterons at HERA would disentangle nonsinglet singlet evolution and further reduce α_s error significantly

New: Determination of light quark couplings to Z boson from LEP, CDF and H1

HERA has entered "new", electroweak, territory in QCD&electroweak SM analysis (H1 hep-ex/0507080)

→HERA data fix sign of high precision LEP results

New NC measurements

 F_2 at medium x (FT region) using inelastic QEDC events Q2 : 0.5 ... 7 GeV² x : 0.001 ... 0.01

 $d^2\sigma/dxdQ^2$ at high x using an improved reconstruction method Q^2 : 576 ... 5253 GeV² x : 0.02 ... 1

Luminosity development at HERA

I: 92-00 (unpolarized e) II: 03-07 (polarized e)

HERAI: H1 and ZEUS took about 130pb⁻¹ with HV on including 16 pb⁻¹ e- data

HERAII "luminosity upgrade"

•2003/2004: positrons H1, ZEUS ~50 pb⁻¹

•2005: electrons: so far 85 pb⁻¹ (H1) 103 pb⁻¹ (ZEUS)

•2007: scheduled end of HERA

First measurement of $\sigma^{\pm}_{CC}(\Lambda)$

Summary and outlook

- First round of measurements and QCD analyses of NC and CC DIS HERA I data is essentially finished.
- HERA can determine full PDF set with controlled systematic employing new techniques and theoretical developments
 - + inclusion of ep jet data
 - + new experimental techniques
 - + combined EW and QCD analysis
 - + inclusion of new polarized HERA II data

HERA data have a great potential but to reach a next level of precision in PDFs and α_s is a serious challenge (data, analysis, NNLO...).

Back Ups

First Polarized e⁺ @H1+ZEUS in 2003

