

Spectroscopy at HERA

Anna Kropivnitskaya – ITEP

on behalf of H1 and ZEUS Collaborations

Search for Strange Pentaquark θ^{\pm} Search for Double Strange Pentaquark Ξ^{--} Search for Charm Pentaquark θ^{0}_{c} Non-exotic hadronic resonances

The HERA Collider

ep kinematics:

energy c.m.: $\int s=300-320 \ GeV$ hadronic energy: $W=m(\gamma^*p)$ photon virtuality : Q^2 inelasticity: $y=Q^2/(x_{Bj}s)$: two regions: $Q^2 \approx 0 \ GeV^2$ — photoproduction $Q^2 > 1 \ GeV^2$ — electroproduction (DIS)

W

e'

 \overline{e}

The strange Pentaquark anti-decuplet

QCD says no objection

Proposed by Diakonov, Petrov, Polyakov in 1997:

- 3 exotic baryons at corner
- Prediction of a width less than 15 MeV for the $\theta^+(1530)$ state

Search for $\theta^+ \rightarrow p \ K^0_s / \theta^- \rightarrow \overline{p} \ K^0_s$ (ZEUS)

Fit: background + two Gaussians χ²/ndf=35/44 Statistical significance(from fit): (221±48) ~ 4.6 σ Mass:1521.5±1.5(stat)^{+2.8}_{-1.7}(sys)MeV Gaussian width: 6.1±1.6(stat) MeV

 $\begin{array}{l} 2^{nd} gaussian: \\ M=1465.1\pm2.9 \ MeV \\ width=15.5\pm3.4 \ MeV \end{array} \begin{array}{l} \Sigma(1480) \ ??? \\ PDG^* \end{array} \\ \hline Signal \ seen \ in \ both \ charges \\ (K^0_{S}-antiproton \ fit, \ \sim 3 \ \sigma) \end{array}$

If interpreted as θ pentaquark \Rightarrow then 1st observation of antipentaquark ?

Cross section measurements of θ^{\pm} (ZEUS)

Production properties of θ^{\pm} (ZEUS)

Search for $\theta^+ \rightarrow p \ K^0_s / \theta^- \rightarrow \overline{p} \ K^0_s$ (H1)

Similar analysis was done at H1:

Search for $\theta^+ \rightarrow p K_s^0 / \theta^- \rightarrow \overline{p} K_s^0$ (H1)

Upper limits on the cross section $\sigma_{upper \ limits}(ep \rightarrow eq^{\pm}X \rightarrow eK_s^{\ 0}pX)$ at 95% confidence level in bins of Q²

no single fluctuation at the same mass at the different Q^2 bins observed

$$\begin{split} \sigma_{upper \ limits} & (ep \rightarrow eq^{\pm}X \rightarrow eK_s{}^0pX) = \\ & 40\text{-}120 \ pb \\ & \text{in } M(K_s{}^0p) = 1.48\text{-}1.7 \ GeV \end{split}$$

no evidence for existing of θ^{\pm}

Search for $\theta^+ \rightarrow p \ K^0_s / \theta^- \rightarrow \overline{p} \ K^0_s$ (H1)

Comparison of H1 and ZEUS in similar phase space region

The resulting upper limit does not exclude the previously observed cross section at ZEUS

Search for Double Strange $\Xi_{3/2}^{--} \rightarrow \Xi^{-}\pi^{--}$

Search for Double Strange $\Xi_{3/2}^{--} \rightarrow \Xi^{-}\pi^{-}$

H1 search in DIS: 1<Q²<100 GeV² 1996-2000 Data 75 pb⁻¹ 0.05<y<0.7

 $D^{\star +} \rightarrow D^{0}\pi_{s}^{+} \rightarrow (K^{-}\pi^{+})\pi_{s}^{+}$ $\Delta M_{D^{\star}} = m(K\pi\pi_{s}) - m(K\pi)$

 $p_T(D^*)>1.5 \ GeV, -1.5<|\eta(D^*)| < 1$ Inelasticity $z(D^*) > 0.2$

3400 events with D* in DIS

Proton identification by dE/dx

Use mass difference method: $M(D^*p)=m(K\pi\pi p)-m(K\pi\pi)+M_{PDG}(D^*)$

Data well described (except in the 3.1 GeV region) by

- "wrong charge D^o"
 (Non-charm background)
- \cdot D* combined with random p (MC)

Signal at 3.1 GeV both in DIS and photoproduction samples

Significance estimate (DIS sample)

Poisson probability (4×10^{-8}) for flat background (51.7 ± 2.7 events) to fluctuate to 95 events corresponds to 5.4σ

From the change in the maximum log-likelihoods of fits (w and w/o signal hypothesis) statistical significance is 6.2σ

Search for $\theta_c \rightarrow D^*p$ in ZEUS

1995-2000 data (126 pb⁻¹)

Search for $\theta_c \rightarrow D^*p$ in ZEUS

No hint for the signal observed by H1 at 3099 MeV

Search for $\theta_c \rightarrow D^*p$:H1 / ZEUS

Comparison of H1 and ZEUS in similar phase space region

ZEUS didn't observe θ_c signal in a DIS data sample 1.7 times of H1 data sample (neither in photoproduction)

Acceptance corrected R_{cor}(D*p(3100)/D*)

H1:

kinematic region: And visible D* range:

1 < Q² < 100 GeV² and 0.05 < y < 0.7 In the visible D*p range: $p_{T}(D*p) > 1.5 \text{ GeV}, -1.5 < n(D*p) < 1.0$ $p_{T}(D^{*}) > 1.5 \text{ GeV}, -1.5 < n(D^{*}) < 1.0, z(D^{*}) > 0.2$

 $R_{cor}(D^*p(3100)/D^*) = (1.59 \pm 0.33(stat) + 0.33) (syst))\%$ (preliminary)

ZEUS: kinematic region: $Q^2 > 1$ GeV2 and y<0.95 phase space: $p_{\tau}(D^*) > 1.5 \text{ GeV}, -1.5 < n(D^*) < 1.0$ 95% C.L. upper limit: R_{cor}(D*p(3100)/D*) < 0.59% (< 0.51% for both D⁰-decay channels)

ZEUS: full kinematic region (DIS + photoproduction) 95% C.L. upper limit:

R_{cor}(D*p(3100)/D*) < 0.47% (< 0.37% for both D⁰-decay channels)

Observation of ZEUS and H1 are not compatible

$\sigma(D^{*}p(3100))/\sigma(D^{*})$ vs. event kinematical variables

MC used for the acceptance correction and comparison: RAPGAP 3.1 MC D*p(3100) was introduce by appropriate changing of mass and decay of $D_1(2420)$ and $D_2*(2460)$ (isotropic decay)

$\sigma(D^{*}p(3100))/\sigma(D^{*})$ as a function of D^{*} variables

Non-exotic particles production

In ZEUS and H1 are measured production of well-known hadrons: pions, K_s^0 , Λ , protons, charm mesons, J/ψ ...

The latest result is the cross section measurement of

Inclusive photoproduction of $\eta,\ \rho^0,\ f_0(980)$ and $f_2(1270)$ mesons at H1

Photoproduction sample 2000: $Q^2 \approx 0$, 38.7 pb⁻¹, $W_{\gamma p}$ =210 GeV

$\eta,\ \rho^0,\ f_0(980)$ and $f_2(1270)$ mesons at H1

Flat distribution in rapidity space

The universal behaviour of hadrons is observed

Conclusions

- θ⁺(1530): evidence for a narrow baryonic state at mass 1521.5 decaying to K⁰_sp (ZEUS). H1 does not observe this state but upper limit does not exclude ZEUS observation.
- Ξ^{--} (1860): no evidence for the NA49 $\Xi^{-}\pi^{-}$ signal

at 1862 MeV (ZEUS)

 θ⁰_c(3100): evidence from H1 for the narrow resonance in D*p system at mass 3099 MeV. With larger statistics ZEUS does not see this signal

Need more statistics (HERA2) to confirm or to exlude the observations

• η , ρ^0 , f_0 , f_2 : The inclusive cross-section for hadronic resonances has the same behavior as observed for long-lived hadrons

Back up slides

The HERA Collider

Production properties of $\Lambda(1520)$ and Λ_c (ZEUS)

The number of extracted Λ_c and $\Lambda(1520)$ candidates are about the same for forward and rear regions

H1 search in DIS: $1 < Q^2 < 100 \text{ GeV}^2$ 1996-2000 Data 75 pb⁻¹ 0.05 < y < 0.7D*+ $\rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+) \pi_s^+$

 $\Delta M_{D^*} = m(K\pi\pi_s) - m(K\pi)$

 $p_T(D^*)>1.5 \ GeV, -1.5<|\eta(D^*)| < 1$ Inelasticity $z(D^*) > 0.2$

3400 events with D* in DIS

Proton identification by dE/dx

Normalized likelihood based on: L(π)+L(K)+L(p) = 1

- P_T(p)>0.12 GeV
 L(p)>0.1 for p(p)>2 GeV
- L(p)>0.3 for p(p)<2 GeV

$\sigma(D^*p(3100))$ as a function of (D*p) variables

