Deeply virtual Compton scattering and prompt photon production at ZEUS and H1 experiments

International Conference on the Structure and Interactions of the Photon
Warsaw, Poland, 31 August - 4 September, 2005
Prompt Photon Production at HERA

\[e + p \rightarrow e + \gamma + X \]

- **DIRECT (LO)**
 - \(Q^2 \)
 - Point like coupling to quark
 - Direct probe of hard process
 - Test of QCD
 - Small (No) hadronization effects
 - (In contrast to jet production)
- **RESOLVED (LO)**
 - \((-\sim) \) Sensitivity to proton and photon PDFs.
 - Two signatures:
 - Inclusive prompt photon
 - Prompt photon + jet

Photon 2005, Warsaw, 01/09/2005

Xavier Janssen – p.2/18
Prompt \(\gamma \) - Data Selection

Photoproduction: H1 + ZEUS \(Q^2 < 1 \text{ GeV}^2 \)
DIS: ZEUS \(Q^2 > 35 \text{ GeV}^2 \)

- Isolated photon candidate:
 - \(E_T^\gamma > 5 \text{ GeV} \)
 - \(-1 \ (-0.7) < \eta^\gamma < 0.9 \)
 - no associated track
 - cone \(R = \sqrt{\Delta \Phi^2 + \Delta \eta^2} = 1 \) with \(E_T^\gamma / E_T^{\text{cone}} > 0.9 \)

- At least 2 tracks:
 - remove DVCS+Bethe-Heitler
 - reduce fragmentation proc.

- For prompt \(\gamma + \text{Jet sample} \):
 - \(E_T^{\text{jet}} > 4.5 (6) \text{ GeV} \)
 - \(-1 \ -1.5 < \eta^{\text{jet}} < 2.3 \)
 - \(-1.5 < \eta^{\text{jet}} < 1.8 \)
Experimental difficulty: photons from hadronic background (π^0, ...) → Signal extraction on basis of shower shape in calorimeters
• Agreement between H1 and ZEUS

• **MC:** **PYTHIA** (**HERWIG**): shape OK but 30 (40) % too low
 Multiple interactions and hadronization corr. reduce \(\sigma \)
 (**cf Isolation cut**)

• **NLO pQCD:** Fontannaz, Guillet & Heinrich / Krawczyk & Zembrzuski
 → good shape description but too low by 30 %
Prompt $\gamma + \text{Jet} - \text{Photoproduction}$

- **NLO pQCD:**
 - Good description of shapes and normalisation
 - Jet requirement result in a better description and smaller LO/NLO difference than in inclusive case
- Multiple interactions and hadronization corr.: Smaller effect than in inclusive case
Prompt γ + Jet - Photoproduction

- **Prompt photon + jet**
 - **c)**
 - Fractional part of incoming photon energy taking part in interaction
 - x_γ
 - x_p
 - Fraction of proton's momentum involved in hard scattering

- **NLO pQCD + Multiple interactions describe the data**
- **MI and h.c. matter for resolved γ contribution ($x_\gamma < 0.5$)**

Photon 2005, Warsaw, 01/09/2005
Xavier Janssen – p.7/18
- **PYTHIA (HERWIG)**: factor 2 (8) too low
- E_T^γ well described by PYTHIA and PYTHIA
- Poor description of η^γ by PYTHIA
- Wide angle QED bremsstrahlung not included in MCs
Prompt $\gamma + $Jet - DIS

- **NLO pQCD (Kramer-Spiesberger):** provides good description except maybe at low E_T^γ (but large errors)
- Large contribution from wide angle bremsstrahlung needed
Deeply Virtual Compton Scattering

\[e + p \rightarrow e + \gamma + p \]

- Factorization theorem:
 - First Diffractive process fully calculable in QCD
- No VM wave function uncertainty
- Access to Generalized Parton Distributions (GPDs)

Diffraction: \(e + p \rightarrow e + X + Y \)
Deeply Virtual Compton Scattering

\[e + p \rightarrow e + \gamma + p \]

- Factorization theorem:
 \[\rightarrow \text{First Diffractive process} \]
 fully calculable in QCD

- No VM wave function uncertainty

- Access to Generalized Parton
 Distributions (GPDs)
Deeply Virtual Compton Scattering

\[e + p \longrightarrow e + \gamma + p \]

- Factorization theorem:
 - First Diffractive process fully calculable in QCD
 - No VM wave function uncertainty
 - Access to Generalized Parton Distributions (GPDs)

- Interference with Bethe-Heitler which is a pure QED process.
 - Access to Amplitudes in Asymmetries
DVCS - QCD predictions

\[H^{q,g}(x, \xi, t) \xrightarrow{\xi \to 0} q(x), g(x) \]
\[\tilde{H}^{q,g}(x, \xi, t) \xrightarrow{t \to 0} \Delta q(x), \Delta g(x) \]

+ E, \tilde{E}: no PDF equivalent

GPDs encodes info about transverse motion of partons and about their correlations

At low \(x\), DVCS is mainly sensitive to \(H^g(x, \xi, t)\)

NLO leading twist calcl. by A. Freund and M. McDermott
DVCS - Data Selection

γ sample

DVCS + Bethe-Heitler

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>ZEUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_1 >$</td>
<td>15 GeV</td>
<td>10 GeV</td>
</tr>
<tr>
<td>$p_{T_2} >$</td>
<td>1 GeV</td>
<td>3 GeV</td>
</tr>
<tr>
<td>$E_2 >$</td>
<td>0.5 GeV</td>
<td>0.2 GeV</td>
</tr>
<tr>
<td>$E_3 <$</td>
<td>no track, Fwd</td>
<td>no track</td>
</tr>
<tr>
<td>Lumi</td>
<td>46.5 pb^{-1} (e^+)</td>
<td>$95 \text{ (e$^+$) pb}^{-1}$ $16.7 \text{ (e$^-$) pb}^{-1}$</td>
</tr>
</tbody>
</table>
DVCS - Data Selection

Control sample
Mainly Bethe-Heitler

<table>
<thead>
<tr>
<th>H1</th>
<th>ZEUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_1 >$</td>
<td>15 GeV</td>
</tr>
<tr>
<td>$p_{T_2} >$</td>
<td>1 GeV</td>
</tr>
<tr>
<td>$E_2 >$</td>
<td>3 GeV</td>
</tr>
<tr>
<td>$E_3 <$</td>
<td>0.5 GeV</td>
</tr>
<tr>
<td>elast.</td>
<td>no track, Fwd</td>
</tr>
<tr>
<td>Lumi</td>
<td>46.5 pb^{-1} (e^+)</td>
</tr>
<tr>
<td></td>
<td>95 (e^+) pb^{-1}</td>
</tr>
<tr>
<td></td>
<td>16.7 (e^-) pb^{-1}</td>
</tr>
</tbody>
</table>

Photon 2005, Warsaw, 01/09/2005

Xavier Janssen – p.12/18
DVCS - Control Plots

ZEUS

- Control sample:
 Well described by MC
 → Detector understood

- γ sample:
 Good description by BH + DVCS MC

→ DVCS cross section:
 1. Subtract Bethe-Heitler
 \[\int d\phi \text{ Interf.} = 0 \]
 2. $\sigma_{ep} \rightarrow \sigma_{\gamma^*p}$ (/ flux factor)
First measurement of t-dependence

Exponential fit in t: $\frac{d\sigma}{dt} \propto \exp(-bt)$

$\rightarrow b = 6.02 \pm 0.35 \pm 0.39 \text{ GeV}^{-2}$ at $Q^2 = 8 \text{ GeV}^2$

No Q^2 dependence observed within errors
DVCS - Q^2 and W dependences

Fit in Q^2: $\propto (Q^2)^{-n}$

$n = 1.54 \pm 0.09 \pm 0.04$

W dependence for 2 Q^2 values

Fit: $\propto W^\delta$

$\delta = 0.77 \pm 0.23 \pm 0.19$

→ indicates hard regime
cf. J/ψ production
DVCS - Comparison to QCD predictions

H1 and ZEUS data are in agreement.

Comparison to NLO QCD:
- Band width reduced by b slope measurement
- Good description by NLO QCD calculations.
- Sensitivity to GPDs parametrization?
DVCS - ... and to Color Dipole Models

In proton rest frame:

\[\gamma^* \] fluctuates in \(q\bar{q} + q\bar{q}g + \ldots \)

\[A = \int dR^2 \, dz \, \Psi^{in} \sigma_{dipole} \Psi^{out} \]

- \(\Psi^{in} \) and \(\Psi^{out} \) calculable
- \(\sigma_{dipole} \) modeled

Donnachie-Dosch: hard + soft \(IP \)

Favart-Machado:

GBW Saturation model

→ Describe shape and norm.

→ F-M slightly better (when including DGLAP)

Photon 2005, Warsaw, 01/09/2005
CONCLUSION

DVCS cross sections measurements versus Q^2, W and t:

- First t slope measurement \rightarrow Constraint theory normalisation
- NLO QCD predictions based on GPDs in agreement with data
- Sensitivity to different GPD models
- Color Dipole models also in agreement with data

Prompt photon production

- Small hadronisation effects \rightarrow Alternative to Jets to study QCD
- PYTHIA and HERWIG undershoot all measurements
- NLO pQCD undershoot inclusive Prompt γ photoproduction
- (Prompt γ + Jet) data are better described by NLO pQCD