**On behalf of H1 and ZEUS Collaborations** 



# Deeply virtual Compton scattering and prompt photon production at ZEUS and H1 experiments

International Conference on the Structure and Interactions of the Photon

Warsaw, Poland, 31 August - 4 September, 2005

#### **Prompt Photon Production at HERA**



**DIRECT (LO)** 



- Point like coupling to quark
  - Direct probe of hard process

→ Test of QCD

- Small (No) hadronization effects (In contrast to jet production)
- (~) Sensitivity to proton and photon PDFs.
- Two signatures:
  - Inclusive prompt photon
  - Prompt photon + jet

#### **Prompt** $\gamma$ - Data Selection

#### Photoproduction: H1 + ZEUS $Q^2 < 1 \text{ GeV}^2$ DIS: ZEUS $Q^2 > 35 \text{ GeV}^2$



- Isolated photon candidate:
  - $E_T^{\gamma} > 5 \; \mathrm{GeV}$
  - -1 (-0.7) <  $\eta^{\gamma}$  <0.9 H1 ZEUS
  - no associated track
  - cone  $R = \sqrt{\Delta \Phi^2 + \Delta \eta^2} = 1$ with  $E_T^{\gamma}/E_T^{\text{cone}} > 0.9$
- At least 2 tracks:
  - → remove DVCS+Bethe-Heitler

vier Janssen – p.3/18

- $\rightarrow$  reduce fragmentation proc.
- For prompt  $\gamma$  + Jet sample:

•  $E_T^{\text{jet}} > 4.5$  (6) GeV

•  $^{-1}_{-1.5} < \eta^{
m jet} < egin{array}{cccc} 2.3 & { extsf{H1}} \ 1.8 & { extsf{ZE}} \end{array}$ 

#### **Prompt** $\gamma$ - Signal Extraction

**Experimental difficulty:** photons from hadronic background ( $\pi^0$ , ...)



#### **Prompt** $\gamma$ - Inclusive Photoproduction



- Agreement between H1 and ZEUS
- MC: PYTHIA (HERWIG): shape OK but 30 (40) % too low Multiple interactions and hadronization corr. reduce σ (cf Isolation cut)
- NLO pQCD: Fontannaz, Guillet & Heinrich / Krawczyk & Zembrzuski
   → good shape description but too low by 30 %

#### **Prompt** $\gamma$ + Jet - Photoproduction



• NLO pQCD:

- Good description of shapes and normalisation
- Jet requirement result in a better description and smaller LO/NLO difference than in inclusive case
- Multiple interactions and hadronizaton corr. Smaller effect than in inclusive case

Photon 2005, Warsaw, 01/09/2005

#### **Prompt** $\gamma$ + Jet - Photoproduction



- NLO pQCD + Multiple interactions describe the data
- MI and h.c. matter for resolved  $\gamma$  contribution ( $x_{\gamma} < 0.5$ )

**Prompt**  $\gamma$  - Inclusive DIS





- PYTHIA (HERWIG): factor 2 (8) too low -
- $E_T^{\gamma}$  well described by PYTHIA and PYTHIA
- Poor description of  $\eta^{\gamma}$  by PYTHIA
- Wide angle QED bremsstrahlung not included in MCs

#### **Prompt** $\gamma$ + Jet - DIS



• NLO pQCD (Kramer-Spiesberger): provides good description except maybe at low  $E_T^{\gamma}$  (but large errors)

Large contribution from wide angle bremsstrahlung needed

#### **Deeply Virtual Compton Scattering**

#### $e + p \longrightarrow e + \gamma + p$

• Factorization theorem:



Diffraction:  $e + p \rightarrow e + X + Y$ 

- → First Diffractive process fully calculable in QCD
- No VM wave function uncertainty
  - Access to Generalized Parton Distributions (GPDs)

#### **Deeply Virtual Compton Scattering**

#### $e + p \longrightarrow e + \gamma + p$



- Factorization theorem:
  - → First Diffractive process fully calculable in QCD
- No VM wave function uncertainty
- Access to Generalized Parton Distributions (GPDs)

#### **Deeply Virtual Compton Scattering**

#### $e + p \longrightarrow e + \gamma + p$



- Factorization theorem:
  - → First Diffractive process fully calculable in QCD
- No VM wave function uncertainty
- Access to Generalized Parton Distributions (GPDs)

 Interference with Bethe-Heitler which is a pure QED process.

 $(\rightarrow \text{Access to Amplitudes in Asymmetries})$ 



#### **DVCS** - QCD predictions



GPDs encodes info about transverse motion of partons and about their correlations

At low x, DVCS is mainly sensitive to  $H^{g}(x,\xi,t)$ 

NLO leading twist calcl. by A. Freund and M. McDermott Eur. Phys. J. C23 (2002) 651

#### **DVCS** - Data Selection

|                                 |             | H1                       | ZEUS                           |  |  |
|---------------------------------|-------------|--------------------------|--------------------------------|--|--|
|                                 | $E_1 >$     | $15 \mathrm{GeV}$        | $10 \mathrm{GeV}$              |  |  |
|                                 | $p_{T_2} >$ | $1 \mathrm{GeV}$         |                                |  |  |
| acomplo                         | $E_2 >$     |                          | $3 { m GeV}$<br>$0.2 { m GeV}$ |  |  |
| y sample                        | $E_3 <$     | $0.5 \mathrm{GeV}$       |                                |  |  |
| DVCS + Bethe-Heitler            | elast.      | no track, Fwd            | no track                       |  |  |
|                                 | Lumi        | $46.5 \ pb^{-1} \ (e^+)$ | 95 (e <sup>+</sup> ) $pb^{-1}$ |  |  |
|                                 |             |                          | $16.7 \ (e^{-}) \ pb^{-1}$     |  |  |
| e                               |             |                          | , <b>−−− b</b>                 |  |  |
| Photon 2005, Warsaw, 01/09/2005 |             |                          | R<br>Xavier Janssen – p.12/18  |  |  |

#### **DVCS** - Data Selection

|       | Control s<br>Mainly Be      | ample<br>the-Heitler | $E_1 >$<br>$p_{T_2} >$<br>$E_2 >$<br>$E_3 <$<br>elast.<br>Lumi | H1<br>15 GeV<br>1 GeV<br>0.5 GeV<br>no track, H<br>$46.5 \ pb^{-1}$ ( | Fwd<br>(e <sup>+</sup> ) | ZE<br>10<br>3 (<br>0.2<br>no t<br>95 (e <sup>+</sup><br>16.7 (e | CUS<br>GeV<br>GeV<br>GeV<br>track<br>$(-) pb^{-1}$<br>$(-) pb^{-1}$ |
|-------|-----------------------------|----------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|
| е     |                             |                      |                                                                |                                                                       |                          | <                                                               | - p                                                                 |
| Photo | on 2005, Warsaw, 01/09/2005 |                      |                                                                |                                                                       | 7                        | R                                                               | Xavier Janssen                                                      |

### **DVCS** - Control Plots



• Control sample:

Well described by MC

→ Detector understood

γ sample:
 Good description by
 BH + DVCS MC

 $\Rightarrow$ DVCS cross section:

1. Subtract Bethe-Heitler (  $\int d\phi$  Interf. = 0 )

2.  $\sigma_{ep} \longrightarrow \sigma_{\gamma^* p}$  ( / flux factor)

#### **DVCS -** t dependence



- First measurement of *t*-dependence
- Exponential fit in  $t: d\sigma/dt \propto \exp(-bt)$

 $\longrightarrow b = 6.02 \pm 0.35 \pm 0.39 \text{ GeV}^{-2}$  at  $Q^2 = 8 \text{ GeV}^2$ 

• No  $Q^2$  dependence observed within errors

#### **DVCS** - $Q^2$ and W dependences



#### **DVCS** - Comparison to QCD predictions



# H1 and ZEUS data are in agreement

#### **Comparison to NLO QCD:**

- Band width reduced by b slope measurement
- Good description by NLO QCD calculations.

# Sensitivity to GPDs parametrization ?

## **DVCS** - ... and to Color Dipole Models

In proton rest frame:



•  $\gamma^*$  fluctuates in  $q\bar{q} + q\bar{q}g + \dots$ 

 $\mathcal{A} = \int dR^2 \ dz \ \Psi^{in} \ \sigma_{dipole} \ \Psi^{out}$ 

- $\Psi^{in}$  and  $\Psi^{out}$  calculable
- $\sigma_{dipole}$  modeled



### **CONCLUSION**

DVCS cross sections measurements versus  $Q^2$ , W and t:

- First t slope measurement  $\longrightarrow$  Constraint theory normalisation
- NLO QCD predictions based on GPDs in agreement with data
- Sensitivity to different GPD models
- Color Dipole models also in agreement with data

#### Prompt photon production

- Small hadronisation effects Alternative to Jets to study QCD
- PYTHIA and HERWIG undershoot all measurements
- NLO pQCD undershoot inclusive Prompt  $\gamma$  photoproduction
- (Prompt  $\gamma$  + Jet) data are better described by NLO pQCD