Search for new Physics at HERA

Particle Physics

André Schöning ETH Zurich

on behalf of the H1 and ZEUS collaborations

MAY 2 - 4, 2005 Arganizers: Vernon Barger, Francis Raizen, Tao Han (chain), Martin Olsson, Inda Dolam, Hooman Davoualasi, Fairick Huber, Heather Logan http://www.pheno.info/symposia/pheno05 Recognizing the contributions f Markim Olsson and Don Reeder to phenomenology research

27.5 GeV electron – 920 GeV proton

HERA Luminosity in 2005

- 2005 best year ever in terms of delivered luminosity
- had many machine breaks and high backgrounds
- background situation is improving!

Overview

New Results:

- Electroweak Physics
- Beyond the SM

HERA Kinematics + Processes

- Dominant SM processes at high p₋:
- NC DIS: $ep \rightarrow eX$ CC DIS: $ep \rightarrow \nu X$ photoproduction: $\gamma p \rightarrow jj$

HERA: Electroweak Unification

• agreement with SM over large range (7 orders) in cross section

CC Polarised Cross Sections

e⁺p/e⁻p results consistent with left-handed CC only!

Electroweak Fits at HERA

Electroweak Fits at HERA (cont.)

Electroweak Physics at HERA

• derived from (unpolarised!) NC DIS:

 \rightarrow results in good agreement with SM prediction!

• similar results for v_d and a_d (weaker bounds)

Electroweak Physics at HERA

• limits on right-handed couplings

BSM

- General Search
- Interesting Events
 - isolated lepton events
 - multilepton events (Higgs)
- Models
 - Leptoquarks/LFV
 - SUSY

General Search HERA I

H1 Collab., Phys Lett B602 (2004)14

Events 10³ 10^{-2} 10⁻¹ 10² 10^{4} 10 study of ALL <u>high p_ final states</u> ----j-j e-i in a single coherent analysis ----μ-j i - v e - v • model independent: e - u \rightarrow search for deviations **ц-ц** i-γ e-γ μ-γ objects: e, μ , γ , jet , ν ν-γ $\gamma = \gamma$ - i - i $p_{\tau} > 20 \text{ GeV} \rightarrow \text{define classes}$ i - i - v • <u>global</u> statistical interpretation: H1 General Search - ΣP_T Scan Number of Event Classes -u -v H1 Data e-i-v MC Experiments 10 μ-i-v H1 Data 10^{-2} SM 1-1-1-1 1.5 3 0 0.5 1 2 2.5-log₁₀Ê H1 General Search 8% SM agreement

André Schöning, ETH Zurich

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

General Search HERA II update

- study of ALL <u>high p₁ final states</u> in a single coherent analysis
- <u>model independent:</u> \rightarrow search for deviations objects: e, μ , γ , jet , ν $p_{\tau} > 20 \text{ GeV} \rightarrow$ define classes

HERA II results:

- in general good agreement with SM
- same excess in ejv channel

 \rightarrow isolated lepton events

Isolated Lepton Events

H1 Collab., Phys. Lett. B561 (2003) 241; ZEUS Collab. Physics Letters B 559 (2003) 153

• <u>SM Process:</u>

W-production ($p_{_{\rm T}}^{_{\rm X}}$ small)

μ

 $ep \rightarrow eX W$ $\mapsto | v$

- <u>BSM Process:</u>
- anomalous single top production
- → RPV SUSY: stop predict high p_T^X !

H1 1994-2000	electron	muon	tau (prel)	W eff.
L(e [±] p)=118 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.	e,mu(tau)
Full Sample	11 / 11.5 ± 1.5	$8 / 2.94 \pm 0.51$	5 / 5.81 ± 1.36	~75% (~15%)
p _T × > 25 GeV	5 / 1.76 ± 0.29	$6/1.68 \pm 0.30$	$0 / 0.53 \pm 0.10$	~85% (~50%)

HERA I Results H1/ZEUS

ZEUS 1994-2000	electron	muon	tau	W eff.
L(e [±] p)=130 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.	e,mu(tau)
Full Sample	$24 / 20.6 \pm 3.2$	$12 / 11.9 \pm 0.6$	$3 / 0.40 \pm 0.12$	~17% (~48%)
p _T ^x > 25 GeV	$2/2.90 \pm 0.46$	$5/2.75 \pm 0.21$	$2 / 0.20 \pm 0.05$	~50% (~50%)

Isolated Lepton Events HERA II

<u>e⁺p scattering (H1: 2003-2004)</u>

H1 2003-2004	electron	muon	total
L(e⁺p)=53 pb⁻¹	obs./exp.	obs./exp.	obs./exp.
Full Sample	$9/4.75 \pm 0.76$	$1 / 1.33 \pm 0.19$	$10 / 6.08 \pm 0.92$
p _T × > 25 GeV	$5 / 0.84 \pm 0.19$	$0 / 0.85 \pm 0.13$	$5 / 1.69 \pm 0.28$

excess for $p_{T}^{X} > 25$ GeV again in electron channel !

ep scattering (H1: 2005)

H1 2004-2005	electron	muon	total
L(e ⁻ p)=21 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.
Full Sample	$5/2.15 \pm 0.33$	$0 \ / \ 0.59 \pm 0.09$	$5/2.75\pm0.40$
p _T × > 25 GeV	$1 / 0.30 \pm 0.05$	$0 / 0.36 \pm 0.06$	$1 / 0.66 \pm 0.10$

no significant ecess at high p_{τ}^{X} in e^{-p}

Anomalous single top production

H1 Collab., Eur. Phys. J. C33 (2004) 9; ZEUS Collab. Physics Letters B 559 (2003) 153

 $v_{Z,U}$ is the anomalous Z boson vector coupling

by different colliders

Multi-Lepton Events in H1

- <u>Study events with 2 or 3</u>
 <u>isolated leptons</u>
 (electron, muon, tau)
- <u>SM processes</u>:
 - lepton pair productionNC DIS

(misidentified hadrons, photons)

HERA Multi-Electrons

H1 Collab., Eur Phys J C31 (2003) 17

1996-2004 $e^{\pm}p$ L=163pb⁻¹ (ICHEP 04) Events eee ee **H1 H1** 10 1

ZEUS(L=130pb⁻¹ SM data 191 213.9 ± 3.9 ee 26 34.7 ± 0.5 eee

80 100 120 140 160 180

M₁₂ (GeV)

	10	-2 🌉					
		0	20	40	60	80	10
D -11	A 10	~1					
ГUII	. All	al	VS	15			

H1(L=163pb ⁻¹)	data	SM
ee	147	149.8 ± 24.8
eee	24	30.4 ± 3.9

 \Rightarrow good agreement with SM

10⁻¹

 10^{-2}

0

20

40

60

M₁₂>100 GeV:

H1 (L=163pb ⁻¹)	data	SM
ee	3	0.44 ± 0.10
eee	3	0.31 ± 0.08

ZEUS(L=130pb ⁻¹)	data	SM
ee	2	0.8 ± 0.1
eee	0	0.4 ± 0.04

excess at high invariant mass

Doubly Charged Higgs Limits

Motivation:

- Higgs triplet(s) of non-zero hypercharge (Left-Right symmetries, GUT)
- can be singly produced at HERA
- couplings to standard leptons unknown:

expect:

- 2 equally charged high p_{τ} leptons
- lepton charge = electron beam charge

Results (H1)

- excess in ee/eee incompatible with $H^{\pm\pm}$ interpretation
- eµ final state (LFV)

Leptoquarks/LFV

Properties:

- multiple charges of 1/3
- carry lepton & baryon number, SU(3)_c color
- •<u>Motivation</u>: light Leptoquarks $M_{LO} < M_{GUT}$ predicted
- GUTs: E₆, SO(10)
- SUSY, Technicolor, Superstrings

20

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

Leptoquark Results

R_PViolating SUSY : light stop

R_PViolating SUSY : light squarks

→ limits for all quark flavors interpretated in mSUGRA (H1 Collab., Eur. Phys. J. C36 (2004) 425)

Stop with Bosonic Decay

H1 Collab., A. Aktas et al., Phys Lett B599 (2004) 159-172

André Schöning, ETH Zurich

24

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

RPV Gaugino Production at HERA

HERA Summary

- Many interesting new results and puzzling excesses (H1)
- Results often competitive and complementary to LEP/Tevatron
- HERA II has become a high luminosity machine
- More interesting HERA results expected in near future by exploiting :
 - Ifferent lepton beam charges and
 - Iongitudinal polarisation

André Schöning, ETH Zurich

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

Backup: Isolated Lepton Events

<u>H1 e[±]p Results 1994-2005</u>

H1 1994-2005	electron	muon	combined
L(e [±] p)=192 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.
Full Sample	25 / 18.3 ± 2.5	$9 / 4.8 \pm 0.8$	34 / 23.1 ± 3.2
p _T × > 25 GeV	$11/3.0\pm0.6$	$\frac{6}{3.0} \pm 0.6$	$17 / 6.0 \pm 1.1$

<u>H1 e⁺p Results 1994-98,1999-2004</u>

H1 94-98,99-04	electron	muon	combined
L(e [±] p)=157 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.
Full Sample	$19 / 14.6 \pm 2.1$	$9/3.9 \pm 0.6$	$28 / 18.5 \pm 2.7$
p ₇ × > 25 GeV	$9/2.3\pm0.4$	$6/2.3 \pm 0.4$	$15 / 4.6 \pm 0.8$

<u>H1 e p Results 1998/99,2005</u>

H1 98/99,2005	electron	muon	combined
L(e [±] p)=35 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.
Full Sample	6 / 3.9 ± 0.6	$0 / 1.0 \pm 0.2$	$6 / 4.8 \pm 0.7$
p _T × > 25 GeV	$2 / 0.7 \pm 0.1$	$0/0.7 \pm 0.1$	$2 / 1.4 \pm 0.2$

Backup: Cross Check Analysis

André Schöning, ETH Zurich

28

Backup: Multi-Electrons Events

André Schöning, ETH Zurich

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

Event 4

Event 5

Event 6

P=13 GeV

Backup: Tri-electron HERA I

Backup: Multi- e 04/05 Preliminary

 $\Sigma E_T > 100 \text{ GeV}$: 0 data for 0.08±0.008 expected no event for M>100 GeV \Rightarrow no

\Rightarrow no new high mass events

Backup: Multi-e All Recent Numbers

André Schöning, ETH Zurich

32

Backup: HERA I+II Results (ICHEP 04

1996-2004 e[±]p All

(HERA I+II)	data(L=163 pb ⁻¹)	SM	Pair Production (Grape)
ee	147	149.8 ± 24.8	125.5
μμ	66	63.7 ± 12.7	63.7
eμ	86	78.4 ± 12.0	46.4
eee	24	30.4 ± 3.9	30.4
eμμ	41	39.5 ± 6.5	39.5

\Rightarrow good agreement with SM

1996-2004 $e^{\pm}p$ M>100 GeV

(HERA I+II)	data(L=163 pb ⁻¹)	SM	Pair Production (Grape)
ee M ₁₂ >100 GeV	3	0.4 ± 0.1	0.32
μμ M ₁₂ >100 GeV	0	0.04 ± 0.02	0.04
eµ M ₁₂ >100 GeV	0	0.31 ± 0.03	0.01
eee M ₁₂ >100 GeV	3	0.04 ± 0.02	0.31
еµµ М _{еµ} >100 GeV	1	0.04 ± 0.01	0.04
e $\mu\mu$ M _{$\mu\mu$} >100 GeV	1	0.02 ± 0.01	0.02

\Rightarrow multi-electrons excess

André Schöning, ETH Zurich

33

Backup: Multi-e All Recent Numbers

1996-2004 e⁺p (e⁻p) All

(HERA I+II)	data(L=163 pb ⁻¹)	SM	Pair Production (Grape)		
ee	147	149.8 ± 24.8	125.5		
μμ	66	63.7 ± 12.7	63.7		
eμ	86	78.4 ± 12.0	46.4		
eee	24	30.4 ± 3.9	30.4		
eμμ	41	39.5 ± 6.5	39.5		

\Rightarrow good agreement with SM

2004-2005 e⁻p All

(HERA I+II)	data(L=21 pb⁻1)	SM	Pair Production (Grape)
ee	21	21.1 ± 1.9	17.2
eμ	8	10.8 ± 2.5	6.6
eee	1	4.2 ± 0.7	4.2
eμμ	6	5.4 ± 0.9	5.4

 $\Sigma E_T > 100 \text{ GeV}$: 0 data for 0.08±0.008 expected M>100 GeV: 0 data

 \Rightarrow also consistent with SM

André Schöning, ETH Zurich

PHENO Symposium, 2-4 May 2005, Madison, Wisconsin, USA

Backup: Doubly Charged Higgs

HERA I 1996-2000

Backup: Doubly Charged Higgs

⇒ excess of high mass multi-electrons cannot be explained by doubly charged Higgs hypothesis

André Schöning, ETH Zurich

36

Backup: Lepton Flavor Violation

ZEUS Collab., DESY-05-016 (1/2005), submitted to EPJ

	$e \rightarrow \tau$		ZEUS $e^{\pm}p$ 94-00		F=0			
 high mass limit M > s: 	αβ	$S^L_{1/2} \ e^{-ar{n}} \ e^{+_{n}}$	$S^R_{1/2} \ e^{-(ar{u}+ar{d})} \ e^{+(u+d)}$	$egin{array}{c} ilde{S}^L_{1/2} \ e^-ar{d} \ e^+d \end{array}$	$V^L_0_{e^-ar d}_{e^+d}$	$V^R_0 \ e^- ar d \ e^+ d$	$egin{array}{c} ilde{V}^R_0 \ e^{-ar{n}} \ e^{+ar{n}} \end{array}$	$V_1^L \ e^-(\sqrt{2}ar u+ar d) \ e^+(\sqrt{2}u+d)$
$\lambda_{eq_{\alpha}} = \lambda_{lq_{\beta}}$	11	$ au ightarrow \pi e$ 0.4 1.8	$ au ightarrow \pi e$ 0.2 1.5	$egin{array}{c} au o \pi e \ 0.4 \ 2.7 \end{array}$	$egin{array}{c} au o \pi e \ 0.2 \ 1.7 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.2 \ 1.7 \end{array}$	$egin{array}{c} au o \pi e \ 0.2 \ 1.3 \end{array}$	$ au ightarrow \pi e$ 0.06 0.6
	12	1.9	au ightarrow Ke 6.3 1.6	$K ightarrow \pi u ar{ u}$ $5.8 imes 10^{-4}$ 2.9	au ightarrow Ke 3.2 2.1	au ightarrow Ke 3.2 2.1	1.6	$K ightarrow \pi u ar{ u}$ $1.5 imes 10^{-4}$ 0.8
	13	*	$egin{array}{c} B ightarrow auar{e} \ 0.3 \ {f 3.2} \end{array}$	$egin{array}{c} B ightarrow auar{e} \ 0.3 \ {f 3.3} \end{array}$	$egin{array}{c} B ightarrow auar{e} \ 0.13 \ egin{array}{c} 2.6 \end{array} \end{array}$	$egin{array}{c} B ightarrow auar{e} \ 0.13 \ egin{array}{c} 2.6 \end{array} \end{array}$	*	$egin{array}{c} B ightarrow auar{e} \ 0.13 \ {f 2.6} \end{array}$
Ч Ч four fermion contact IA	21	6.0	au ightarrow Ke 6.3 4.1	$K ightarrow \pi u ar{ u}$ $5.8 imes 10^{-4}$ 5.2	au ightarrow Ke 3.2 2.3	au ightarrow Ke 3.2 2.3	2.1	$K ightarrow \pi u ar{ u}$ $1.5 imes 10^{-4}$ 0.9
	22	au ightarrow 3e 5 10	au ightarrow 3e 8 5.6	au ightarrow 3e 17 6.6	$\tau \rightarrow 3e$ 9 3.4	au ightarrow 3e 9 3.4	τ → 3ε 3 5.5	$egin{array}{c} au ightarrow 3e \ 1.6 \ 2.1 \end{array}$
 u,p generation indices limits set on (1/TaV²). 	23	*	$B \rightarrow \tau \bar{e} X$ 14 8.1	$B \rightarrow \tau \bar{e} X$ 14 7.8	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	*	$B \rightarrow \tau \bar{e} X$ 7.2 5.5
$\frac{\lambda_{eq_{\alpha}}\lambda_{lq_{\beta}}}{M_{LQ}^{2}}$	31	*	$egin{array}{c} B ightarrow auar{e} \ 0.3 \ 7.8 \end{array}$	$egin{array}{c} B ightarrow auar{e} \ 0.3 \ 7.2 \end{array}$	Vил 0.12 2.Б	$egin{array}{c} B ightarrow auar{e} \ 0.13 \ egin{array}{c} 2.6 \end{array} \end{array}$	*	V _{ωδ} 0.12 2.5
	32	*	$B \rightarrow \tau \bar{e} X$ 14 11	$B \rightarrow \tau \bar{e} X$ 14 10	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	*	$B \rightarrow \tau \bar{e} X$ 7.2 4.2
	33	*	au ightarrow 3e 8 15	$\tau \rightarrow 3e$ 17 14	$\tau \rightarrow 3e$ 9 8.1	$\tau \rightarrow 3e$ 9 8.1	*	$egin{array}{c} au ightarrow 3e \ 1.6 \ 8.1 \end{array}$

André Schöning, ETH Zurich

Backup: RPV SQUARKS (mSUGRA)

