ep physics at HERA

Masahiro Kuze (Tokyo Institute of Technology) On behalf of H1 and ZEUS collaborations

- HERA and experiments
- Proton structure
- Search for new physics
- Status and results from HERA-II

HERA ep Collider at DESY/Hamburg

- $E_p = 920 \text{GeV} \otimes E_e = 27.5 \text{GeV} (e^+ \text{ or } e^-) \Rightarrow \sqrt{s} = 318 \text{GeV}$
- 2 colliding experiments and 2 fixed-target experiments
- HERA-I on-tape luminosity: ~110 pb⁻¹ e⁺p, ~15 pb⁻¹ e⁻p ('98-'99) /exp't.

Masahiro Kuze (TIT)

HERA-II (2003-2007)

- High luminosity + Longitudinal lepton polarization
 - Also detector upgrades (e.g. new or extended micro-vertex for *b,c* tagging)

High-lumi data-taking well on its way

The Detectors

• ZEUS Detector

- Uranium-Scintillator calorimeter
 - $\sigma(E)/E = 18\%/\sqrt{E}$ for electrons
 - $\sigma(E)/E = 35\%/\sqrt{E}$ for hadrons
- Central tracking detector
 - $\sigma(p_T)/p_T =$ 0.0058 $p_T \oplus 0.0065 \oplus 0.0014/p_T$
- H1 Detector
 - Liquid-Ar calorimeter
 - $\sigma(E)/E = 12\%/\sqrt{E}$ for electrons
 - $\sigma(E)/E = 50\%/\sqrt{E}$ for hadrons
 - Central tracking detector

HERA: the QCD machine

- Probe the proton = our most familiar micro-cosmos with a point-like lepton probe. 'giant electron-microscope'
- Bjorken *x*: Fractional momentum of a parton in the nucleon.
- 1/Q (momentum transfer) gives the spacial resolution.

Example of high-Q² NC/CC events

Kinematic region probed

- > 100x larger kinematic reach compared to fixed-target DIS experiments at CERN, DESY, FNAL, SLAC... (if proton is at rest, HERA CM energy means E_e=54<u>TeV</u>)
- At high Q^2 , probe the validity of QCD at smallest distance \rightarrow Quark structure? New particles? $(Q^2=40,000 \text{ GeV}^2 \rightarrow 1/Q=0.001 \text{ fm})$
- At low Q², probe the low-x region

 → very soft constituents of proton;
 Saturation? Breakdown of standard
 DGLAP formalism (BFKL) ?

Cross section & Structure functions

• NC differential cross section

 $\frac{d^2\sigma_{e^{\pm}p}}{dxdO^2} = \frac{2\pi\alpha^2}{xO^4} \left[Y^+ F_2(x, Q^2) + Y^- xF_3(x, Q^2) - y^2 F_L(x, Q^2) \right]$ $\mathbf{F}_{2} = \sum xq_{f}(x, Q^{2})[e_{f}^{2} - 2e_{f}v_{f}v_{e}P_{Z} + (v_{f}^{2} + a_{f}^{2})(v_{e}^{2} + a_{e}^{2})P_{Z}^{2}]$ $xF_3 = \sum xq_f(x, Q^2)[-2e_fa_fa_eP_Z + 4v_fa_fv_ea_eP_Z^2]$ (f=u,d,c,s,b) $xq_f^{\pm} = xq_f(x,Q^2) \pm x\overline{q}_f(x,Q^2)$ (Parton Distribution Functions) $P_{Z} = \sin^{-2}2\theta_{W} \cdot Q^{2} / (Q^{2} + M_{Z}^{2})$ (Z-exchange & γ -Z interference) $Y^{\pm} = 1 \pm (1-y)^2$, e_f : quark charge, v_i/a_i : EW couplings $F_{I} = F_{2} - 2xF_{1}$ ($\rightarrow 0$ in LO QCD, longitudinal Str. Function)

Relevance for LHC

 10^{9}

LHC parton kinematics

Low-*x* PDF only measured at HERA: $x_{12} = (M/14 \text{ TeV}) \exp(\pm y)$ Q = Mx >as low as 10⁻⁴ important for 10^{8} M = 10 TeV100GeV<M<1TeV in 'central' region at LHC. 10^{7} \mathbf{O}^2 High-x PDF: M = 1 TeV 10^{6} Q^2 evolution to $<\sim 10^4$ GeV² checked at HERA. 10^{5} QCD still works: prediction power. M = 100 GeV 10^{4} Crucial inputs for signal cross section and QCD-background estimation. 10^{3} $\mathbf{v} =$ – Higgs, SUSY, top-pair, W/Z (luminosity)... 10^{2} M = 10 GeVfixed **HERA** 10^{1} target Martin et al., EPJC 14 (2000) 133 10^{0} 10^{-2} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-7} 10^{-1} 10^{0} Х

Relevance for LHC (cont'd)

• HERA-LHC WS: impact of new ZEUS PDF using jet data

jet data: sensitive to middlehigh-x gluons $(\gamma^*g \rightarrow jj)$

cf. F_2 data primarily sensitive to quarks

Pinning down α_s

- Measured with various methods
- Giving very competitive precision.

Evidence of Electro-Weak Unification

- At low Q^2 : NC ~ $1/Q^4$ (EM current) CC ~ G_F^2 (Weak current)
- At high Q^2 (> M_z^2 , M_W^2): Both NC and CC mediated by unified EW current. $\sigma_{NC} \sim \sigma_{CC}$
- Dumping of σ_{CC} at high Q² comes from W propagator. M_w = 82.9 ±1.8 GeV (from H1 HERA-I data)
- Space-like: q²(boson) << 0

 Completely different phase-space from time-like bosons
 at LEP and Tevatron (q² > 0).
 Complementary evidence/measurement.

31/May/2005 PASCOS05 Gyeongju

Polarized CC cross sections from HERA-II

- CC pure left-handed. $\sigma = (1 \pm P) \sigma_{P=0}$
- Deviation from 0 at P=±1 \rightarrow can search for right-handed weak current. Sensitivity with 1fb⁻¹: M(W_R)~400GeV.
- Do not depend on right-handed CKM matrix element V_{ud}^R.

31/May/2005 PASCOS05 Gyeongju

d,s,b

HERA is not only a QCD machine.

- LEP/Tevatron: e⁺e⁻ / qq annihilation = 'matterless' initial state
 → s-channel (time-like) production of gauge bosons or new 'non-matter'
 particles (e.g. Higgs), or pair-production of matter particles (e.g. top pair)
 possible.
- HERA = eq collision = non-zero initial L/B numbers

 \rightarrow t-channel (space-like) exchange of gauge bosons or new particles, or s-channel production of new particles possessing both L and B numbers, or exotic states of matter particles (e.g. excited fermions) are probed.

First natural question: is quark elementary?

• Repeat 'form-factor measurement' as Hofstadter did, but at $Q^2 \sim 40,000 \text{ GeV}^2$ instead of 1 GeV².

- Resolution = $1/Q \sim 10^{-16}$ cm = 0.001 proton radius

- If quark has a finite radius, cross section will decrease as the probe 'penetrates' into it (sees less EW charge). $\sigma = \sigma_{SM}(1 - \langle R_n^2 \rangle Q^2/6)^2 \qquad zeus$
- Limits on quark size (assuming electron is pointlike) ZEUS: $R_q < 0.85*10^{-16}$ cm H1: $R_q < 1.0*10^{-16}$ cm (95% CL)

Contact Interactions

- Physics at very high mass-scale could still be 'felt' at lower energies via virtual effects. e.g. new gauge bosons, composite fermions, ...
- Generically described as CI Lagrangian eeqq vector CI: $L_{CI} = \sum_{i, j=L,R}^{q=u,d} \eta_{ij}^{q} (\bar{e}_{i} \gamma^{\mu} e_{i}) (\bar{q}_{j} \gamma_{\mu} q_{j})^{i/j: \text{ lepton/quark chirality}}$

 $\eta = g^2 / \Lambda^2$ (g: unknown coupling, convention takes $g^2 = 4\pi$; Λ : new physics scale) Analogy: early days of weak int. ('large' Mw) = 4-fermion CI. $G_{\text{Fermi}} \sim e^2 / \sin^2 \theta_W M_W^2$ LEP

Contact Interactions (2)

- Fit CI models to Q^2 dist. of data (example: AA=LL-LR-RL+RR)
- Different sign of $\eta \rightarrow$ different interference of CI–SM
- Limits on Λ on various models:
 1.7 6.2 TeV (ZEUS)
 1.6 5.5 TeV (H1)

Comparable to Tevatron/LEP limits on eeqq CI

Large Extra Dimensions

- <u>Arkani-Hamed, Dimopoulos and Dvali:</u> Assume n extra dimensions compactified to scale R, where only gravity propagates. Real GUT scale could be as low as TeV (RⁿM_sⁿ⁺² ~ M²_{Planck})
- <u>Collider consequence:</u> exchange of Kaluza-Klein excitations of gravitons would modify SM-particle scattering at high energy.

• <u>HERA</u>: eeqq CI formalism with λ/M_s^4 as a parameter

•
$$\lambda = +1: M_s > 0.82 \text{ TeV (H1)}$$

 0.78 TeV (ZEUS)
 $\lambda = -1: M_s > 0.78 \text{ TeV (H1)}$
 0.79 TeV (ZEUS)

• LEP, Tevatron limits ~ 1 TeV

Masahiro Kuze (TIT)

Leptoquarks

- Lepton & Quark = elementary fermions: could have fundamental new interaction. New state with L and B numbers: Leptoquark
- Predicted in many GUT models.
 - Could be scalar or vector.
 - Could be matter-matter (F=L+3B= ± 2 , l^-q) or antimatter-matter (F=0, l^+q) state.
- HERA: s-channel *eq* fusion produces LQ.
 - Resonance in eq (vq) invariant mass in NC(CC) events.
 - e^+p data sensitive to F=0 LQ, e^-p sensitive to F=2 LQ.
 - Production cross section $\propto \lambda^2$
- No excess observed over SM predictions.

 λ : Yukawa coupling

LQ limits compared to other colliders

- Example: S_L⁰ LQ (Buchmüller-Rückl-Wyler classification) This LQ decays 50% to eq, 50% to vq → NC and CC results combined.
- Tevatron: LQ pair-production with strong coupling
 - Limits independent on λ
 - Lower sensitivity to $LQ \rightarrow \nu q$
- LEP2: virtual effects in $e^+e^- \rightarrow$ hadrons

SCALAR LEPTOQUARKS WITH F=2 $(S_{0,L})$

Supersymmetry

- SUSY: all fermions (bosons) have super-partener bosons (fermions)
- Most general SUSY Lagrangian contains a term violating L-number: $\lambda'_{ijk} L_i Q_j D_k \quad \lambda'_{ijk}$: R-parity-violating Yukawa coupling
- Resonant single production of squark possible at HERA e.g. λ'_{131} : $e^+d \rightarrow \tilde{t}_L$
- Production analogous to LQ, but decay can be more complicated (gauge decay to q+χ, followed by cascade χ decay)
 e.g. multi-jets + lepton final state

Limits on RPV coupling vs. M_{squark}

- Cover most of the final-state branching ratios; no excess found.
- MSSM parameter scan: limits on λ ' as a function of squark mass.
- Explore new regions (down to $\lambda' \sim 0.01$) for λ'_{121} and λ'_{131} , for squark masses below 300GeV.

Forbidden Lepton/Quark Transitions

(1) LFV

- ep→µX, ep→τX
 Strictly forbidden in SM
 (ν-osc. gives negligible rates)
- No event found: limits expressed in context of LFV LQs (coupling to 2 lepton generations)
- Strong limits exist for light quarks, but HERA is competitive for heavy-quark couplings.

LFV (cont'd)

• For very heavy LQs: CI limits $\lambda_{eq_{\alpha}} \lambda_{lq_{\beta}} / M_{LQ}^2$ (TeV⁻²) for quark generations (α , β)

black - best low-energy limits red - ZEUS limits

• Example: $e \rightarrow \tau$ transition Again, stringent limits for $(\alpha,\beta)=(1,1)$, but HERA has high potential for higher generations

	e —	τ	ZEUS	5 94-97	F	= 2	
$\alpha\beta$	$S_0^L \ e^+ ar u_lpha$	$S^{R}_{0}_{e^{+}ar{u}_{lpha}}$	$rac{ ilde{m{S}}^{m{R}}_0}{e^+ ar{d}_lpha}$	$S_1^L \ e^+(ar u+\sqrt{2}ar d)_lpha$	$V^{L}_{1/2} _{e^+ ar d_lpha}$	$V^{R}_{1/2} \ e^{+(ar{u}+ar{d})_{lpha}}$	$ ilde{V}^L_{1/2} \ e^{+ar{u}_lpha}$
11	G _F 0.3 5.4	$egin{array}{c} au ightarrow \pi e \ 0.4 \ 5.4 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.4 \ 7.1 \end{array}$	G _F 0.3 2.8	$egin{array}{c} au ightarrow \pi e \ 0.2 \ egin{array}{c} 2.6 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.1 \ 1.3 \end{array}$	$ au ightarrow \pi e$ 0.2 1.7
1 2	$K \rightarrow \pi \nu \bar{\nu}$ 10^{-3} 14	14	au ightarrow Ke 5 9.3	$egin{array}{c} K ightarrow \pi u ar{ u} ightarrow 10^{-3} \ 4.6 \end{array}$	$K \rightarrow \pi \nu \bar{\nu}$ 5×10^{-4} 5.5	au ightarrow Ke 3 4.5	8.2
13	V _{ub} 0.4 *		$B ightarrow au ar{e} X$ $rac{8}{12}$	V_{ub} 0.4 5.5	$B \rightarrow \tau \bar{e} X$ 4 8.4	$B \rightarrow \tau \bar{e} X$ 4 8.4	•
21	$K \rightarrow \pi \nu \bar{\nu}$ 10^{-3} 5.9	5.9	au ightarrow Ke 5 7.8	$K \rightarrow \pi u ar{ u}$ 10^{-3} 3.2	$K \rightarrow \pi \nu \bar{\nu}$ 5×10^{-4} 2.5	$\tau \rightarrow Ke$ 3 1.3	1.6
2 2	$ au \rightarrow ee\bar{e}$ 20 19	$\tau \rightarrow e e \bar{e}$ 20 19	$ au \rightarrow ee\bar{e}$ 66 13	$\tau \rightarrow e e \bar{e}$ 55 6.2	$ au \rightarrow ee\bar{e}$ 33 6.5	$\tau \rightarrow e e \bar{e}$ 15 5.2	$\tau \rightarrow e e \bar{e}$ 10 9.7
2 3	$B \rightarrow l\nu X$ 4 *	*	$egin{array}{c} B ightarrow au ar{e} X \ 8 \ 17 \end{array}$	$egin{array}{c} B ightarrow l u X \ 4 \ 8.1 \end{array}$	$B \rightarrow \tau \bar{e} X$ 4 11	$B \rightarrow \tau \bar{e} X$ 4 11	•
31	$B \rightarrow l \nu X$ 4 *	•	$egin{array}{c} B ightarrow auar{e}X \ 8 \ 9.3 \end{array}$	$egin{array}{c} B ightarrow l u X \ 4 \ 4.7 \end{array}$	$B \rightarrow \tau \bar{e} X$ 4 2.6	$B \rightarrow \tau \bar{e} X$ 4 2.6	•
3 2	$B \rightarrow l \nu X$ 4 *	*	$B \rightarrow \tau \bar{e} X$ 8 21	$egin{array}{c} B ightarrow l u X \ 4 \ 10.2 \end{array}$	$B \rightarrow \tau \bar{e} X$ 4 7.6	$B \rightarrow \tau \bar{e} X$ 4 7.6	•
33			$\tau \rightarrow ee\bar{e}$ 66 <u>30</u>	$\tau \rightarrow e e \bar{e}$ 55 16	$\tau \rightarrow e e \bar{e}$ 33 15	$\tau \rightarrow e e \bar{e}$ 15 15	•

(2) FCNC in top sector

- Flavour-Changing Neutral Currents Absent in SM at tree level (GIM)
 Small rate when top in the loop.
 e.g. K_L→μμ, b→sγ
- Top FCNC: negligible SM rate, not very tightly constrained.
 → sensitive to physics beyond SM.

HERA: ep → tX (→bW⁺X), sensitive to t-u-γ coupling (u-quark in proton)
 Probes unexplored region from LEP (e⁺e⁻→ tq), Tevatron (t→ γq, Zq) (they also explore t-c-γ/Z coupling)

Puzzling 'Isolated Lepton' events

- FCNC top decay $t \rightarrow bW \rightarrow blv$: "lepton+missing Pt+large Pt(had)" Dominant SM background: on-shell W production ($\sigma \sim 1 \text{ pb}$) H1 has had an excess in this channel: Pt(1)>10, Pt(miss)>12, Pt(had)>25GeV e: N_{obs} =4, N_{SM} =1.49±0.25 µ: N_{obs} =6, N_{SM} =1.44±0.26 Phys. Lett. B561 (2003) 241
- ZEUS data consistent with SM: Pt(1)>5, Pt(miss)>20(e)10(µ),Pt(had)>25GeV e: $N_{obs}=2$, $N_{SM}=2.90\pm0.45$ µ: $N_{obs}=5$, $N_{SM}=2.75\pm0.21$ Phys. Lett. B559 (2003) 153
- ZEUS looked at τ final state (hadronic decay) and see outstanding events $-\tau: N_{obs}=2, N_{SM}=0.20\pm0.05 Pt(jet,track)>5, Pt(miss)>20,Pt(had)>25GeV PLB583(2004)41$

High-Pt leptons – latest numbers

- 6 new electron events at Pt(had)>25GeV
- No new muon event
- Overall excess in $e+\mu$ channels
- τ search at H1
 - No excess seen (HERA-I data)
- More data needed to resolve the puzzle.

e⁺∣	data (1994-2005) 192 pb ⁻¹					
	Electron	Muon	Tau⁰			
	obs./exp. (W)	obs./exp. (W)	obs./exp. (W)			
All P _T ^x	25/18.3 ± 2.5 (70%)	9/4.8 ± 0.8 (85%)	5/5.8 ± 1.4 (15%)			
$P_{T}^{X} > 25 \text{ GeV}$	11/3.0 ± 0.6 (81%)	6/3.0 ± 0.6 (86%)	0/0.5 ± 0.1 (49%)			
			⁰ e [±] p (1996-2000) 108 pb ⁻¹			

Summary

- High- $Q^2 ep$ collision at HERA: precise determination of PDF, pinning down gluon density and α_s .
 - Solid confidence on perturbative QCD (after 30 years).
 - Indispensable inputs to LHC physics.
- Short-distance *eq* collision: unique opportunity to search for particles and forces beyond SM.
 - Many results competitive/complementary with other colliders.
- HERA-II running with lepton polarization well on its way. Plan to deliver 700 pb⁻¹ of $e_{L,R}^{\pm}$ till 2007.

– Especially a big leap in e^-p data (only ~15 pb⁻¹ in HERA-I).

• Please stay tuned!