Charm Production in ep collisions

$XXXXth$ Recontres de Moriond

JEANNINE WAGNER
DESY / EKP Karlsruhe

- Introduction, theoretical Framework
- D mesons - Fragmentation
- Proton structure function: F_2^c
- D^* (+jets)
- D^* + muon: Double tag
Center of mass energy (\sqrt{s}):

$$s = (k + P)^2$$

Virtuality of γ:

$$Q^2 = -q^2 = -(k - k')^2$$

x (x_g): Fraction of the parton (gluon) of the total p-momentum in the QPM

$$x = Q^2 / (2 \cdot P \cdot q)$$

Two kinematic regimes:

- $Q^2 \to 0$ GeV2: Photoproduction (γp)
- $Q^2 \geq 2$ GeV2: Electroproduction (DIS)
Production of Heavy Quarks at HERA

Dominant process (PhotonGluonFusion):

Fragmentation:
- Universality

p structure:
- Proton structure function: F_2^c

Production mechanism:
- Contributing processes

Factorisation:

p structure \otimes hard process \otimes fragmentation
Charm Tagging

ZEUS

$D^* \rightarrow D^0 \pi_s \rightarrow K \pi \pi_s$

- ZEUS (prel.) 1995-2000 (127 pb$^{-1}$)
- Backgr. wrong charge

$D_s \rightarrow \phi \pi \rightarrow KK\pi$

- ZEUS (prel.) 1998-2000
- Gaussmod + Gaussmod + EXP

$130 < W < 300$ GeV, $Q^2 < 1$ GeV2
$P_T(D_s^-D^0) > 3.8$ GeV, $|\eta(D_s^-D^0)| < 1.6$

$N(D_s^0) = 1086 \pm 85$
$N(D_s^-) = 229 \pm 62$

Jeannine Wagner
La Thuille, 12.-19. March, 2005
Charm Fragmentation

Reconstruction of charmed mesons: D^\pm, D^0, D_s^\pm, $D^{*\pm}$, (Λ_c^\pm, ZEUS only)

Universal fragmentation ansatz reasonable
(independent of hard scat. process and of c prod. scale)

Similar shapes for different D mesons
Fragmentation Ratios

- \(R_{u/d} = c\bar{u}/c\bar{d} \)
 - Ratio of \(u \) to \(d \)
 - \(R_{u/d} \sim 1 \rightarrow \) Confirmation of isospin invariance

- \(\gamma_s = 2c\bar{s}/(c\bar{u} + c\bar{d}) \)
 - Strangeness suppression factor \((u:d:s=1:1:\gamma_s)\)
 - \(s \) suppressed by a factor 3-4

- \(P_v = VM/(VM + PS) \)
 - Fraction of \(D \) mesons produced as VM
 - Naive spin counting \((P_v = 3/4)\) does not work

Good agreement between data and world average
Precision comparable with LEP (DELPHI)
Charm contribution to F_2: $F_2^{c\bar{c}}$

F_2: Proton structure function

Extraction of $F_2^{c\bar{c}}$:
- D^* cross section in visible range
 → Large extrapolation
- Inclusive c tagging (vertex detector, VTX)
 → Almost no extrapolation

- Agreement between data and ZEUS NLO QCD fit over a wide rang in Q^2 and x
- Prediction of charm contribution to F_2 from scaling violations is consistent with $F_2^{c\bar{c}}$ measurement
Modelling Heavy Quark Production

pQCD calculations in NLO: (DGLAP evolution used for PDF’s)

- **Fixed order massive scheme** (scale $\mu^2 \approx m_Q^2$)
 - γp: FMNR (Frixione et al.)
 - DIS: HVQDIS (Harris et al.)

- **Massless scheme** ($\mu^2 \gg m_Q^2$)
 - γp: Cacciari et al., Kniehl et al.

MC generators: (LO matrix element + parton showers)

- **PYTHIA** (DGLAP evol.), **CASCADE** (CCFM evol.)

Evolution models for PDF: (PDF known at μ_0^2 \rightarrow PDF at μ^2)
Inclusive D^* Events

DIS and Photoproduction

Extension of Q^2 distribution towards low values using the beam pipe calorimeter (BPC)

![Graph showing $d\sigma/dQ^2$ vs Q^2](image)

- Massive NLO calculation consistent with data
- Massive and matched (FONLL) NLO calculations do not describe all details of the data

Photoproduction

$3.25 < p_T(D^*) < 5$ GeV

![Graph showing $d\sigma/d\eta$ vs $\eta(D^*)$](image)

- ZEUS (prel.) 98–00
- HVQDIS, $M_{c}=1.35$ GeV, ZEUS NLO pdf fit

![Line plot showing $d\sigma/dQ^2$ vs Q^2](image)

- ZEUS DIS BPC D* (prel.) 98-00
- ZEUS DIS D* 98-00

Jeannine Wagner

La Thuille, 12–19. March, 2005

9/13
Jet requirement →
Additional scale E_T^{jet}

At high E_T^{jet}:
'Massive' NLO calculation below data
'Massless' NLO calculation better here

Theories have large uncertainties
Double Tag - $D^* + \text{muon}$

- **Charge and angle correlation:**
 - Separation of charm and beauty (not shown)
 - Selection of double tagged events (90% charm, 10% beauty)

- **Double tag:**
 - Sensitive to details of production mechanism (e.g. NLO effects - LO: $p_T(QQ) = 0$)
 - Correlation between $D^*\mu$ and QQ
 - $x_g^{obs}(D^*\mu) = M^2(D^*\mu) \cdot x/Q^2$ approximates x_g well
 - Correlation between $p_T(D^*\mu)$ and k_T worse

- Require muon in addition to D^*
$D^* + \text{muon in Photoproduction}$

- All calculations give a reasonable description of the data
- LO FMNR is too soft, while NLO FMNR fits the data well
- Differences between PYTHIA (DGLAP evol.) and CASCADE (CCFM evol.) small
Summary

- **Fragmentation - fractions and ratios:**
 - Fragmentation of charm is independent of the hard physics

- **Proton structure -** $F_2^{c\bar{c}}$:
 - c contribution to F_2 predicted from scaling violations consistent with $F_2^{c\bar{c}}$ measurement \rightarrow QCD does a good job

- **Production mechanism:**
 - $D^* (+$ Jets) in photoproduction:
 - NLO QCD calculations have some problems to describe data
 - $D^* +$ muon - double tag:
 - NLO effects clearly seen