Structure Functions and Parton Distribution Functions at the HERA ep Collider

by Chris Targett-Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005

Today we'll be covering the following topics

- Introduction to HERA physics & kinematics
- ep cross-sections and structure functions
- Applications of HERA structure function data
- Measurements of F_2 , xF_3 and F_L
- HERA QCD fits
- Summary

Introduction to HERA Physics

• HERA is the largest of the particle accelerator rings operated by DESY (Hamburg, Germany) • The world's only ep collider. • 90% of the delivered luminosity between 93-04 has been with e⁺ • Currently delivering e⁻ luminosity • ZEUS and H1 are two general purpose experiments located on the HERA ring

Introduction to HERA Kinematics

 γ / Z^0 exchange Neutral Current (NC) W^{\pm} exchange Charged Current (CC) $\sqrt{s} = 320(300) GeV$ CMS energy $Q^2 \equiv -q^2 = -(k-k')^2$ γ virtuality $Q^2 > 1 GeV^2$ Deep Inelastic Scattering (DIS) $Q^2 < 1 GeV^2$ **Photoproduction**

 $x = \frac{Q^2}{2P_n \cdot q}$ Fraction of proton's momentum carried by the struck parton

Fraction of lepton's energy transferred to the proton

$$Q^2 = sxy$$
 $Y_{\pm} = 1 \pm (1-y)^2$

ep Cross-Sections and Structure Functions

$$\frac{d^2 \sigma_{NC}(e^{\pm} p)}{dx dQ^2} = \frac{2 \pi \alpha^2}{xQ^4} \Big[Y_+ F_2(x, Q^2) - y^2 F_L(x, Q^2) \mp Y_- F_3(x, Q^2) \Big]$$

Modified at high Q^2 by Z^0 propagator.

$$\frac{d^2 \sigma_{CC}(e^{\pm} p)}{dx dQ^2} = \frac{G_F^2 M_W^2}{2 \pi x (M_W^2 + Q^2)^2} \Big[Y_+ W_2^{\pm}(x, Q^2) - y^2 W_L^{\pm}(x, Q^2) \mp Y_- W_3^{\pm}(x, Q^2) \Big]$$

HERA inclusive data provides valuable information on sea and valence quarks. Gluons probed indirectly via scaling violations and directly via jet data. $F_{2} \propto \sum (xq_{i} + x \bar{q}_{i}) \qquad \text{Dominant contribution}$ $xF_{3} \propto \sum (xq_{i} - x \bar{q}_{i}) \qquad \text{Sensitive at high } Q^{2}$ $F_{L} \propto \alpha_{s} xg(x, Q^{2}) \qquad \text{Sensitive at high } Q^{2} & \text{$high y$}$ $\text{similarly for } W^{\pm}_{2}, xW^{\pm}_{3} \text{ and } W^{\pm}_{L}.$ $\frac{d^{2}\sigma_{cc}(e^{+}p)}{dxdQ^{2}} \propto \left[(\bar{u} + \bar{c}) + (1 - y)^{2}(d + s)\right]$ $\frac{d^{2}\sigma_{cc}(e^{-}p)}{dxdQ^{2}} \propto \left[(u + c) + (1 - y)^{2}(\bar{d} + \bar{s})\right]$ Sensitive to u and d valence $\frac{d^{2}\sigma_{cc}(e^{-}p)}{dxdQ^{2}} \propto \left[(u + c) + (1 - y)^{2}(\bar{d} + \bar{s})\right]$

The Importance of HERA Data

- Q² dependence is directly calculable using pQCD (DGLAP)
- x dependence has to be determined empirically
- Measure cross sections -> perform fits
- HERA PDFs extrapolate into LHC region
- Crucial in calculations of new physics and measurements at LHC

$$\tilde{\sigma}_{NC} = \frac{Q^2 x}{2 \alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma}{dx dQ^2} Reduce Cross set$$

$$\tilde{\sigma} = F_2$$
 when $F_L \equiv xF_3 \equiv 0$

- Range in x : 0.00001 -1 • Range in $Q^2 \sim 1-30000 \text{GeV}^2$ •Measured with ~2-3% precision
- Directly sensitive to sum of all quarks and anti-quarks
- Indirectly sensitive to gluons via scaling violations.

H1 Measurement of F_{I}

 F_L extraction from H1 data (for fixed W=276 GeV) $F_{L}(Q^{2})$ 1.2 NLO $\alpha_{\rm e}$ fit (H1) H1 preliminary NLO fit (ZEUS) H1 e⁺ NLO MRST 2001 H1 e⁻ NLO (Alekhin) 0.8 NNLO (Alekhin) 0.6 H1 Collaboration 0.4 0.2 0 10² 10 1 Q^2/GeV^2

$$F_2 = cx^{-\lambda}$$
 and $F_L(x, Q^2) \equiv F_L(Q^2)$
Therefore, fit
 $f(y) = cx^{-\lambda} - \frac{y^2}{Y_+} F_L(Q^2)$
with measured $\sigma_r(y)$ to find
 $F_r(Q^2)$

• At presently reached accuracy F_L data is reasonably well described by NLO QCD in which the gluon distribution is determined from the scaling violations of F_2

ZEUS Measurement of F_{L}

• The only way to measure F_L directly is to make measurements of σ_r at fixed x and Q^2 but differing values of y. • F_L can then be disentangled from F_2 $\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_L}F_L(x, Q^2)$

- ISR reduces s
- At fixed x and Q^2 , y is different
- Changes contribution of F_2 and F_1 .
- Measure σ_r vs y and fit for F_L .
- Measurement only made in one Q² bin.
- Measurement is not very precise but is clearly consistent with the expectations of pQCD.

High Q² NC Cross Sections

• At high Q^2 NC cross sections for e^+ and e^- deviate

$$\tilde{\sigma}_{NC}^{\pm} \simeq F_2 \mp \frac{Y_-}{Y_+} x F_3$$

 Subtract NC positron from electron cross section

- High Q² NC cross sections directly sensitive to different species of valence quark
- Errors dominated by statistical error of the e⁻ sample
- Need greater luminosity
- Currently running with e⁻

General method

- Parameterize PDFs at some starting scale Q_0^2
- Evolve to arbitrary Q² using DGLAP
- Calculate cross sections and compare to data
- Iteratively change the starting parameters until best fit is found

HERA QCD fits – A brief history

- Performed by both H1 and ZEUS, broadly compatible
- Valence quarks constrained by heavy target data (ν Fe and μ D)
- World F_2 data used -> Many different experiments, not just HERA
- Inclusive cross sections indirectly sensitive to gluon (scaling violations)
- α_s and gluon strongly correlated via DGLAP -> poor α_s and gluon extraction

$$\frac{dq_{i}(x,Q^{2})}{dlnQ^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[\sum_{j} q_{j}(y,Q^{2}) P_{q_{i}q_{j}}\left(\frac{x}{y}\right) + g(y,Q^{2}) P_{q_{i}g}\left(\frac{x}{y}\right) \right]$$

HERA QCD fits – New developments

- High Q^2 NC and CC data constrain valence quarks -> No fixed target data
- Exclusive (Jet) cross sections tie down the gluon, accurate determination of α_s .
- Fits done entirely with HERA data, no external experiments

ZEUS QCD fits – Jet Data

QCD Compton and Boson-Gluon fusion processes give rise to events with distinct jets in the final state.
 QCDC depends on α_s & q_i(x,Q²), dominates at hard scales.

 q_i(x,Q²) well constrained from NC and CC data.
 Thus, at hard scales α_s may be extracted without strong correlation to g(x,Q²)
 Further, BGF depends directly on g(x,Q²) and provides a means to constrain the gluon

DIS inclusive jets

 $\gamma p \ dijets$

TEUS HERA QCD fits – Extracted PDFs

ZEUS and H1 PDFs broadly consistent
HERA PDFs consistent with those of MRST and CTEQ

ZEUS ZEUS QCD fits – Impact of Jet Data

Jet data has a significant impact on the precision of the extracted gluon PDF.
 MRST and CTEQ also include jet data in their fits (High-E_T Tevatron jet data), however the cross sections are included using approximate techniques.

• ZEUS utilizes a rigorous method of including jet data in its fits.

HERA QCD fits – Determination of α_{s}

• HERA continues to produce important research on proton structure and provide a stringent testing ground for QCD

- PDFs and α_{s} can be extracted with minimal data from external experiments
- Rigorous inclusion of jet data into the fitted data sets leads to a significantly more precise gluon PDF and α_s to be extracted from HERA data alone
- HERA II measurements already reaching publication stage

Luminosity has now been collected with 0, (-) and (+) polarisation

• First measurement of the helicity structure of CC interactions with a space-like gauge boson

• HERA II program well underway -> Increased statistics -> even more precise cross section measurements

• Currently running with electrons -> More precise electron NC and CC cross sections -> More precise extraction of xF_3

• Combination of ZEUS and H1 data sets to produce Global

HERA fits

- NNLO QCD fits
- Inclusion of more exclusive data in to the fitted data sets: heavy flavor cross sections, optimized jet cross sections etc
- Possible dedicated reduced E_p (still in the early stages of deliberation) running periods allowing a direct measurement of F_1

Thank you for paying attention! Any queries, please contact us target@mail.desy.de