Studies of Beauty at H1 and ZEUS

I. Bloch, DESY Hamburg / Hamburg University

• Introduction & Theory

Measurement methods & Results:
γp μ+jets
DIS μ+jet
DIS inclusive F^{bb}₂

Summary & Outlook

Moriond QCD 12.-19.03.'05

7FUS

HERA: ep collisions within H1 & ZEUS

Beauty Production in ep collisions

Multiple scales:

- $\mathbf{m}_{\mathbf{h}} \sim 5 \mathrm{GeV}$
- $p_{T}^{\ b}$ ~ typically few GeV
- $\mathbf{Q^2} \le 1 \text{ GeV}^2 \text{ Photoproduction } (\gamma p)$ $\gtrsim 1 \text{ GeV}^2 \text{ Deep inelastic}$ scattering (DIS)

NLO calculations with different schemes depend on dominant scale:

• "massive scheme" FFNS:

$$Q^2, p_{Tb}^2 \approx m_b^2$$

• "massless scheme" ZM-VFNS:

 $Q^2, p_{Tb}^2 \gg m_b^2$

• combined massive⊗massless: VFNS

Beauty Production in ep collisions

Beauty in γp , μ +jets and δ (1)

H1 - Beauty in μ +**dijet**:

Simultaneous two-dimensional $\mathbf{p}_{\mathrm{T}}^{\mathrm{rel}}$ and δ fit.

Method yields **enhanced statistics** and **reduced systematic uncertainties**.

 $\begin{array}{l} & \gamma \mathbf{p} \\ & 99\text{-}00\text{:} 50 \text{ pb}^{\text{-}1} \\ & Q^2 < 1 \text{ GeV}^2 \\ & y \in [0.2, 0.8] \\ & p_T^{\ \mu} > 2.5 \text{ GeV} \\ & \eta^{\mu} \in [-0.55, 1.1] \\ & p_T^{\ jet} > 7 (6) \text{ GeV} \\ & |\eta_{\text{lab}}^{\ jet}| < 2.5 \end{array}$

hep-ex/0502010

I. Bloch, DESY/Hamburg University

Beauty in γp , μ +jets and δ (2)

Beauty in γp , μ +jets and δ (3) - comparison with ZEUS

Beauty in DIS, μ +jet and δ (1)

hep-ex/0502010

Beauty in DIS, μ +jet and δ (3)

Data higher at low p_T^{\ \mu} as for the γp measurement. Higher data **also in forward** η .

Beauty in DIS, μ +jet and δ (3) – comparison with ZEUS

I. Bloch, DESY/Hamburg University

Moriond QCD 12.-19.03.'05

Kinematic

ranges differ,

but similar

trend in η

is seen.

Not

reproduced by

the predictions.

Beauty contribution to F_{γ} in DIS - method

High statistics and high separation of **beauty** at high S_{γ} . Fitted to determine beauty fraction:

Measure **b** $\overline{\mathbf{b}}$ contribution to proton structure F_{γ} at $\mathbf{Q}^2 > 150 \text{ GeV}^2$.

Method: inclusive lifetime tagging

- use all tracks ($p_t > 0.5$ GeV) with at least one silicon track.
- $S_{1(2)}$ = significance $S_{1(2)} = \delta/\sigma_{\delta}$ of (second) largest imp. parameter δ . ($|\delta| < 0.1$ cm)
- $S_{1(2)}$ sign from jets (97%) or hadronic final state, select only: $sign(S_1) = sign(S_2)$

r qq

Differential fraction of cross sections:

Integrated cross sections,

Beauty contribution to F₂:

I. Bloch, DESY/Hamburg University

Beauty in γp , μ +jets or δ , HERA II

0.1

Summary

- Jet- μp_T^{rel} and impact parameter measurements have been performed in DIS and γp
- H1 and ZEUS measurements agree
- Beauty data in general agreement with NLO
- data generally slightly higher, localised
 - at low p_{T}^{μ} (γp +DIS) and
 - forward η (DIS)
- inclusive DIS impact parameter measurement used for F_2^{bb} is in good agreement with NLO

Outlook

- HERA II is running smoothly in electron mode
 - already accumulated more e- data than ever before
- new detectors performing well, quantitative results soon

I. Bloch, DESY/Hamburg University

Backup: Data - NLO ratio

This is just a rough comparison. Q^2 is not the driving scale in the whole range!

Main caveats:

- NLO has been extrapolated to hadron level using different approaches
- NLO has been calculated for different sets of scales and parameters, same for the uncertainty
- Cross section definitions and kinematic ranges somewhat different