Searches for new Physics in ep Collisions at HERA

XXXXth Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Aosta Valley, Italy, March 5-15, 2005

Christian Schwanenberger DESY/Universität Bonn

on behalf of the

Collaborations

CIIIS

New Physics Searches at HERA

Searches for new Resonances or Contact interactions:

- Lepton Flavor Violation
- Leptoquarks
- Contact Interctions
- Extra Dimensions
- Quark Radius
- Excited Fermions
- SUSY in MSSM
- R-Parity-violating SUSY Searches

Exclusive Final States:

- Isolated Leptons and missing pT (HERA II)
- Single Top Production
- Multi-Lepton Events (HERA II)
- Double-charged Higgs
- Superlight Gravitinos
- Magnetic Monopoles
- General Search (HERA II)
- Pentaquarks

➡ What is new compared to summer (ICHEP)

CIIIS

HERA: ep Collider and Experiments

03/09/2005, Moriond EW

HERA Delivered Luminosities

Lepton Flavor Violation

- Neutrino oscillation: lepton flavor not conserved
- Many extensions from SM: GUT, SUSY, compositeness, technicolor predict $e \rightarrow \mu$, $e \rightarrow \tau$
- Charged leptons: very stringent limits from rare decays, especially for $e \rightarrow \mu$
- At HERA: LFV can be mediated by LQs which couple to different generations

 At HERA: LFV can be mediated by R-parity-violating SUSY

Extensions from SM:

couple to leptons and quarks, carry **B**, $L \neq 0$

Buchmüller-Rückel-Wyler (BRW) Minimal Model:

- Chiral coupling invariant under SM gauge transformation
- 7 scalar and 7 vector leptoquarks with fermion number:

$$F = -(3B + L) = 0 \text{ or } 2$$

• decays: e.g. BR(LQ \rightarrow Iq) = β (Iq) = 1, 1/2, 0

$e \rightarrow \mu$ Transition (leptonic τ decays similar)

03/09/2005, Moriond EW Christian Schwanenberger

enberger

$e \rightarrow \tau$ Transition (hadronic decays)

- E, > 45 GeV
- 15 < E P, < 60 GeV
- Energy deposit in RCAL less than 7 GeV
- No electron with energy larger 10 GeV
- Discriminant of 6 jet shape variables:

\Rightarrow 0 event, 1.1 \pm 0.5 expected

CIIIS

Christian Schwanenberger

Limits for F=0 Low Mass LQs for µ Channel (130 pb^{-1}) ZEUS **vector** scalar , 10, λ_{eq} × β_{μ q} , λ_{eq} × β_μ, ZEUS e⁺p 94-00 (b) ZEUS.e⁺p 94-00 excluded at 95% C.L. excluded at 95 $S_{1/2}^{L}$ 10⁻² 10⁻² Indirect constraints 10 10 300 150 200 250 300 150 200 250 M_{LO}(GeV) M_{in}(GeV) from low energy **experiments** $\lambda_{\rm eq}$ $\lambda_{\rm eq}$ (c) ZEUS e⁺p 94-00 (d) ZEUS e p 94-00 10⁻¹ 10 $\lambda_{eq} = \lambda_{\mu q}$ $\lambda_{eq} = \lambda_{\mu q}$ 10⁻² 10⁻² →µe N→eN 10^{*} 10

⇒ for couplings of em strength: LQs of mass 257-299 GeV excluded

150

200

250

M₁₀(GeV)

300

200

150

250

300

M_{in}(GeV)

Christian Schwanenberger

Limits for F=0 Low Mass LQs for τ Channel (130 pb^{-1}) ZEUS scalar **vector** $\lambda_{eq} \times \beta_{\epsilon_q}$ $\lambda_{eq} \times \beta_{\epsilon q}$ (a) ZEUS e⁺p 94-00 (b) ZEUS e⁺p 94-00 excluded at 95% C.1 excluded at 95 **`10**´ 10 $S_{1/2}^{L}$ 10⁻² 10⁻² Indirect constraints from low energy 10 10 200 250 300 200 250 300 150 150 **experiments** M_{LO}(GeV) M_{LO}(GeV) $\lambda_{\rm eq}$ λ_{eq} (c) ZEUS e⁺p 94-00 (d) ZEUS e¹p 94-00 10 10 $\lambda_{eq} = \lambda_{\tau q}$ $\lambda_{eq} = \lambda_{eq}$ 10⁻² 10⁻² $-S_{1/2}^{L}$ V^R₀ - -- B→τe 10⁻³ 10⁻³ 150 300 150 250 300 200 250200

\Rightarrow more stringent than from rare B, K, τ decays for M₁₀ = 250-280 GeV

M_{LO}(GeV)

Christian Schwanenberger

M_{LO}(GeV)

R-Parity

discrete multiplicative symmetry in SUSY mode Is:

$$R_P = (-1)^{3\mathbf{B}+L+2S}$$

B: baryon number L: lepton number B: spin

 $R_P = 1$ for SM particles

 $R_P = -1$ for SUSY particles

R-Parity conservation:

- SUSY particles produced in pairs
- LSP is stable
- experimental signature of SUSY: E_T^{miss}

R-Parity Violation at HERA

 \bullet R_P can explicitly be broken by trilinear couplings in superpotential

$$W_{R_{p}} = \lambda_{ijk} L_{i} L_{j} \overline{E}_{k} + \lambda'_{ijk} L_{i} Q_{j} \overline{D}_{k} + \lambda''_{ijk} \overline{U}_{i} \overline{D}_{j} \overline{D}_{k}$$

$$\overbrace{L \neq 0}^{\tilde{I}} I \qquad \overbrace{Q_{j}}^{\tilde{I}} \overline{Q}_{k} + \lambda''_{ijk} \overline{U}_{i} \overline{Q}_{j} \overline{Q}_{k} + \lambda''_{ijk} \overline{U}_{i} \overline{Q}_{j} \overline{Q}_{k}$$

single sparticle production

- unstable LSP
- final states with large multiplicity

 \Rightarrow assume that one \mathbb{R}_p coupling dominates

R_p-violating Neutralino Production at HERA

so far: s channel squark

new: t channel selectron

NEW:

 \Rightarrow analyse SUSY independent of TeVatron mass bounds on squarks

 \Rightarrow set first limits on λ'_{121} for low selectron mass & large squark mass

Gravitino Production via t Channel Selectron Exchange

 \Rightarrow study of \mathbb{R}_p SUSY independent of squark mass, dependent on $m_{\tilde{e}_L}$, m_{χ_0}

- ⇒ Gauge Mediated SUSY Breaking: slepton masses lower than squark masses
- \Rightarrow analyse gravitino (= p_t^{miss}) + photon decay of neutralino for the first time

Distributions and Final Selection Cuts

64.3 pb^{-1} of $e^{+}p$ data, 13.5 pb^{-1} of $e^{-}p$ data

 \Rightarrow 1 event, 2.9 \pm 0.3 expected (radiative CC)

Christian Schwanenberger

Limits on Cross Section

⇒first limits independent of squark masses

Christian Schwanenberger

03/09/2005, Moriond EW

Page 17

High p, Lepton Events at HERA

Possible other explanations:

Anomalous top production, RPV SUSY: e.g. $ep \rightarrow \tilde{t} \rightarrow \tilde{b}W$ (no deviation)

CIIIS

High p, Lepton Events at HERA

Example of Tau Candidate

Isolated Lepton Results at HERA I

H1 1994-2000	Electron	Muon	Tau ^{prel.}	W contrib.
$\mathcal{L}(e^{\pm}p)=118\mathrm{pb^{-1}}$	obs./exp.	obs./exp.	obs./exp.	$e\mu$ ($ au$)
Full sample	11 / 11.5 ±1.5	<mark>8/2.94 ±</mark> 0.51	5/5.81 ±1.36	≈ 75(15)%
$P_T^X > 25 \ {\rm GeV}$	<mark>5</mark> / 1.76 ±0.29	<mark>6</mark> / 1.68 ±0.30	0/0.53 ±0.10	≈ 85(50)%
$P_T^X > 40 {\rm GeV}$	<mark>3</mark> /0.66 ±0.13	<mark>3</mark> /0.64 ±0.14	0/0.22 ±0.05	pprox 90(55)%
				a matrix de la companya de
ZEUS 1994-2000	Electron	Muon	Tau	W contrib.
$\mathcal{L}(e^{\pm}p) = 130 { m pb}^{-1}$	Electron obs./exp.	Muon obs./exp.	Tau obs./exp.	W contrib. $e\mu\left(au ight)$
$\begin{aligned} \mathbf{\mathcal{L}}(e^{\pm}p) &= 130 \mathrm{pb^{-1}} \\ & \text{Full sample} \end{aligned}$	Electron obs./exp. 24 / 20.6 ±3.2	Muon obs./exp. 12 / 11.9 ±0.6	Tau obs./exp. <mark>3</mark> / 0.4 ±0.12	W contrib. $e\mu (au) pprox 17(48)\%$
${\cal L}(e^{\pm}p) = 130 { m pb}^{-1}$ Full sample $P_T^X > 25 { m GeV}$	Electron obs./exp. 24 / 20.6 ±3.2 2 / 2.9 ±0.46	Muon obs./exp. 12 / 11.9 ±0.6 5 / 2.75 ±0.21	Tau obs./exp. 3 / 0.4 ±0.12 2 / 0.2 ±0.05	W contrib. $e\mu$ ($ au$) pprox 17(48)% pprox 50(50)%

W contribution is NLO: Diener, Schwanenberger, Spira

observed excesses in H1 + Zeus do not match channels

Isolated Leptons at HERA II

H1 Collaboration (updated since ICHEP)

HERA II: complete data sample

HERA I+II combined

CIIIS

Updated Isolated Lepton Results at HERA II

H1 1994-2004	Electron	Muon	Tau ^{prel.}	W contrib.
$\mathcal{L}(e^{\pm}p) = \texttt{171} \ \texttt{pb}^{-1}$	obs./exp.	obs./exp.	obs./exp.	$e\mu$ ($ au$)
Full sample	$20/16.3 \pm 2.2$	$9/4.3 \pm 0.7$	5/5.81 ±1.36	≈ 75(15)%
$P_T^X > 25 \; {\rm GeV}$	$10/2.6 \pm 0.5$	$6/2.5 \pm 0.5$	0/0.53 ±0.10	≈ 85(50)%

ZEUS 1994-2000	Electron	Muon	Tau	W contrib.
$\mathcal{L}(e^{\pm}p)=130\mathrm{pb^{-1}}$	obs./exp.	obs./exp.	obs./exp.	$e\mu$ ($ au$)
Full sample	24 / 20.6 ±3.2	12/11.9 ±0.6	<mark>3/0.4 ±</mark> 0.12	\approx 17(48)%
$P_T^X > 25 \ {\rm GeV}$	2 / 2.9 ±0.46	$5/2.75 \pm 0.21$	<mark>2/0.2 ±</mark> 0.05	\approx 50(50)%

W contribution is NLO: Diener, Schwanenberger, Spira

combined electron+muon:

full sample : 29/20.6 ± 2.9 (74%)

P,^x>25 GeV : 16/5.1 ± 1.0 (85%)

General Search

B

Magnetic Monopoles

- <u>Dirac</u>: Existence of Magnetic Monopoles leads naturally to an explanation of charge quantisation
- Also predicted from theories which unify the fundamental forces
- Formation of a monopole condensate provides a possible mechanism for quark confinement

Quantisation of angular momentum of a system with electric charge e and a monopole with magnetic charge g leads to charge quantisation condition (Dirac):

- $n = 1 \Rightarrow$ minimum magnetic charge g_n
- down quark: e = -1/3 => fundamental magnetic charge 3g_n
- Dirac: n is even if particle has electric and magnetic charge
 → fundamental magnetic charge > 3g

Magnetic Monopoles

• Heavily ionising magnetic monopoles produced in e⁺p collisons may

- stop in AI beam pipe around interaction point
- Binding energy in AI is expected to be large
 - permanently trapped if stable
- Data from 1995-1997: 62 pb⁻¹, √s = 300 GeV
- beam pipe cut in long thin strips and analysed in Superconducting Quantum Mechanical Interference Device (SQUID)

Christian Schwanenberger

05.11.2004, DØ Deutschland-Treffen

Summary

- HERA performs a wide range of searches for physics beyond the SM
- No evidence for new physics found yet
- Limits on Lepton Flavor Violation and Leptoquarks
- Limits on Superlight Gravitino Production
- Limits on Magnetic Monopoles
- Still very interesting excesses in $e_{j\nu} + \mu_{j\nu}$ by H1, in $\tau_{j\nu}$ by ZEUS and also in recent data $e_{j\nu}$ by H1

⇒ more luminosity needed to solve "Isolated Lepton Puzzle"

Outlook

• HERA provides now e^{-p} collisions (only $\simeq 20 \text{ pb}^{-1}$ from 1998/99)

➡ interesting potential for more "New Physics from HERA"

