EW measurements with longitudinal polarised leptons in deep inelastic positron-proton scattering

Julian Rautenberg on behalf of the H1 and ZEUS Collaborations

- Deep inelastic scattering at HERA I
- Polarisation at HERA II
- CC and NC Measurements
The Hadron-Elektron-Ringanlage (HERA)

World-wide unique accelerator at DESY, Hamburg

HERA-circumference: 6.3 km
Bunch-distance: 32 m ≈ 96 ns ≈ 100 MHz

Protonen/ Elektronen
E = 820 GeV/ 920 GeV

Positronen/ Elektronen
E = 27.5 GeV
DIS at HERA

Neutral Current (NC)

\[e(k) \rightarrow e(k') + \gamma, Z^0(q) \]

\[p(P) \rightarrow X(P') \]

Charged Current (CC)

\[e(k) \rightarrow \nu(k') + W^\pm(q) \]

\[p(P) \rightarrow X(P') \]

Invariant kinematic quantities:

\[Q^2 = -q^2 = -(k - k')^2 \]

Negative four-momentum transfer squared

\[x = \frac{Q^2}{2P \cdot q} \]

In proton infinite-momentum frame: fraction of proton momentum

\[y = \frac{P \cdot q}{P \cdot k} \]

In proton rest-frame: energy-transfer

\[s = (k + P)^2 = \frac{Q^2}{xy} \]

Squared cms energy

\[k, P \text{ fixed } \& \text{ 4-momentum conservation} \]

\[\Rightarrow 2 \text{ independent kinematic Quantities} \]

Deep inelastic \(\equiv Q^2 \gg 1 \text{ GeV}^2 \), here \(Q^2 \sim 100 \text{ GeV}^2 \)
NC & CC DIS measurement: events

Neutral Current (NC)

- **Signature:**
 - the DIS electron
- **Background-rejection:**
 - ep-collision vertex
 - trans. (p_t) and long. ($E - p_z$)
 - momentum conservation

Charged Current (CC)

- **Signature:**
 - ν undetected \Rightarrow trans. momentum
- **Background-rejection:**
 - ep-collision vertex
 - sphericallity
Unpolarised inclusive cross sections

Neutral Current (NC)

\[
\frac{d^2\sigma^{e\pm p}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \times \left[Y_F^{NC} + y^2 F_L^{NC} \right]
\]

\[F_2^{NC} = x \sum_{q=u\ldots b} A_f [q + \bar{q}] \]

\[xF_3^{NC} = x \sum_{q=u\ldots b} B_f [q - \bar{q}] \]

\[\tilde{\sigma} = \frac{xQ^4}{2\pi\alpha^2 Y_+} \frac{d^2\sigma^{NC}}{dxdQ^2} \]

Helicity-factor:
\[Y_{\pm} = 1 \pm (1 - y)^2 \]

\[F_2^{NC} \] parity conserving (EM)
\[F_3^{NC} \] parity violating (weak)

Charged Current (CC)

\[
\frac{d^2\sigma^{e\pm p}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{Q^2 + M_W^2} \right)^2 \times \left[1 + y^2 F_C^{CC} \right]
\]

in CC \(F_i \) depend on lepton charge

\[F_2^{CC} = x [d + s + \bar{u} + \bar{c}] \]

\[xF_3^{CC} = x [d + s - (\bar{u} + \bar{c})] \]

\[\tilde{\sigma}^{e+p} = x [(\bar{u} + \bar{c} + (1 - y)^2 (d + s)] \]

\[F_2^{CC} \] purely weak
\[F_i^{CC} \] coupling independent
Inclusive HERA I measurements

Electron ideal (EW) “probe” for F_i-measurements
⇒ Input for PDF extractions
⇒ Input for SM predictions

CONFIRMATION OF SM EW-SECTOR

at scale up to $Q^2 \approx M_W^2$ & above

$\frac{d\sigma}{dQ^2} (\text{pb/GeV}^2)$

$Q^2 (\text{GeV}^2)$

$y < 0.9$

$F_i(Q^2, x)$ \stackrel{\text{DGLAP}}{\rightarrow} F_i(Q^2, x)$
⇒ Test of QCD
Parity violating xF_3:
- None-zero xF_3 measured at HERA
- Precision limited by low statistics of e^-p sample

Composition of xF_3:

$$xF_3 = -ae\chi_Z xG_3 + 2aeve\chi_Z^2 xH_3$$

- xG_3 stems from $\gamma-Z$ interference
- xH_3 arises from pure Z-exchange
- $\chi_Z = \kappa_W \cdot Q^2/(M_Z^2 + Q^2)$
- $2aeve\chi_Z^2 xH_3$ negligible
- Straight forward extract xG_3
Parity violating xF_3:
- None-zero xF_3 measured at HERA
- Precision limited by low statistics of e^-p sample

Composition of xF_3:

$$xF_3 = -a_{e}\chi_Z xG_3 + 2a_{e\nu}\chi_Z^2 xH_3$$

- xG_3 stems from $\gamma - Z$ interference
- xH_3 arises from pure Z-exchange
- $\chi_Z = \kappa_W \cdot Q^2/(M_Z^2 + Q^2)$
- $2a_{e\nu}\chi_Z^2 xH_3$ negligible
- Straight forward extract xG_3
- Compare to low Q^2 fixed-target BCDMS
EW at HERA I: helicity-structure in CC

W couples to left-(right-)handed (anti-)particles

<table>
<thead>
<tr>
<th>scattering off</th>
<th>Spin-sum in CMS</th>
<th>Helicity</th>
<th>constraint on scattering angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+\bar{q}$</td>
<td>R.H.+R.H.</td>
<td>zero</td>
<td>no preference (isotrop)</td>
</tr>
<tr>
<td>e^+q</td>
<td>R.H.+L.H.</td>
<td>one</td>
<td>dominantly forward</td>
</tr>
</tbody>
</table>

$$\sum_{e^+q} S_i = 0$$

$\bar{e} \Rightarrow \bar{\nu}' \Leftrightarrow \bar{u}, \bar{c}$

$\bar{d}, \bar{s}' \Leftrightarrow$ CMS

$\sum_{e^+q} S_i = 1$

$\bar{e} \Rightarrow \bar{\nu}' \Rightarrow d, s$

$u', c' \Rightarrow$
EW at HERA I: helicity-structure in CC

W couples to left-(right-)handed (anti-)particles

<table>
<thead>
<tr>
<th>scattering off</th>
<th>Spin-sum in CMS</th>
<th>Helicity</th>
<th>constraint on scattering angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+\bar{q}$</td>
<td>R.H.+R.H.</td>
<td>zero</td>
<td>no preference (isotrop)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dominatedly forward</td>
</tr>
<tr>
<td>e^+q</td>
<td>R.H.+L.H.</td>
<td>one</td>
<td></td>
</tr>
</tbody>
</table>

Down-type (anti-)quarks contribution suppressed by helicity:

\[
\bar{\sigma}^{e^-p} = x \left[u + c + (1-y)^2 (\bar{d} + \bar{s}) \right]
\]
\[
\sigma^{e^+p} = x \left[\bar{u} + \bar{c} + (1-y)^2 (d + s) \right]
\]

Helicity-structure of EW confirmed

Assuming $q_s = \bar{q}_s \Rightarrow \bar{\sigma}^{e^-p} - \sigma^{e^+p} = xu_v - (1-y)^2 x d_v$

⇒ access to valence PDFs

ZEUS

- $x = 0.068$
- $x = 0.13$
- $x = 0.24$

ZEUS e^+p 99-00
ZEUS e^-p 98-99
ZEUS-S
$\bar{x}(u+c)$
$x(u+c)$
HERA II: longitudinally polarised leptons

Longitudinal polarisation of lepton beam provides direct EW sensitivity

Sokolov-Termov effect builds-up transverse polarisation
Since 2002 spin-rotators also around H1 & ZEUS (before only Hermes)

Polarisation measured at HERMES (LPOL) & HERA-west (TPOL)

Polarisation builds-up fast and stable at up to \(\sim 50\%\)
HERA II: e^+p 2003-04 data-taking period

History of long. pol.: 20% — 50%

HERA delivered luminosity:

Cross-section data-sets:

<table>
<thead>
<tr>
<th>L/pb^{-1}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3</td>
<td>+33.0%</td>
</tr>
<tr>
<td>21.7</td>
<td>-40.2%</td>
</tr>
<tr>
<td>14.1</td>
<td>+31.8%</td>
</tr>
<tr>
<td>16.4</td>
<td>-40.2%</td>
</tr>
</tbody>
</table>
Cross sections for polarised lepton beam

\[CC: \quad \sigma_{CC}(P) = (1 + P) \cdot \sigma_{CC}(P = 0) \]

\[\text{NC:} \quad \frac{d\sigma^{\pm}_{e^+p\rightarrow e^+X}}{dQ^2dx} = \frac{2\pi\alpha^2}{xQ^4} \left[\sigma_0 + \sigma_i^\pm(\lambda) + \sigma_Z^\pm(\lambda) \right] \]

\[
\begin{align*}
\sigma_0 &= Y_+ \hat{F}_2 \\
\sigma_i^\pm(\lambda) &= P_Z \left[Y_+(-\nu \mp \lambda a) \tilde{G}_2 + Y_+(\pm a + \lambda \nu)x\tilde{G}_3 \right] \\
\sigma_Z^\pm(\lambda) &= P_Z^2 \left[Y_+(\nu^2 + a^2 \pm \lambda \nu a) \hat{H}_2 + Y_-(\mp 2\nu a - (\nu^2 + a^2)\lambda)x\hat{H}_3 \right]
\end{align*}
\]

\[
\begin{align*}
\hat{F}_2 &= x \sum_q (q + \bar{q}) \cdot q_q^2 \\
\tilde{G}_2 &= x \sum_q (q + \bar{q}) \cdot 2vq_qq \\
\hat{H}_2 &= x \sum_q (q + \bar{q}) \cdot (v_q^2 + a_q^2) \\
x\hat{G}_3 &= 2x \sum_q (q - \bar{q}) \cdot a_qqq \\
x\hat{H}_3 &= 2x \sum_q (q - \bar{q}) \cdot a_qvq
\end{align*}
\]
CC DIS measurement: control plots

Kinematics reconstructed from haronic final state (JB)

H1 / ZEUS Detectors are well understood after major upgrade and performing well
H1 CC DIS measurement: cross section

Kinematic region: $Q^2 > 400 \text{ GeV}^2, y < 0.9$

$\sigma_{CC}(P = +33 \pm 2) =$

$34.7 \pm 1.9(\text{stat.}) \pm 1.7(\text{syst.}) \text{ pb}$

$\sigma_{CC}(P = -40.2 \pm 1.5) =$

$13.8 \pm 1.0(\text{stat.}) \pm 1.0(\text{syst.}) \text{ pb}$

Since: $\sigma_{CC}(P) = (1 + P) \cdot \sigma_{CC}(P = 0) \Rightarrow$ linear fit to $\sigma_{CC}(P)$

$\sigma_{CC}(P = -1) = -3.7 \pm 2.4(\text{stat.}) \pm 2.7(\text{syst.}) \text{ pb}$

Consistent with no R.H. W-exchange
ZEUS CC DIS measurement: cross section

Kin. region: $Q^2 > 200$

\[
\sigma_{CC}(P = +31.8 \pm 0.9) = 46.7 \pm 2.4\text{(stat.)} \pm 1.0\text{(syst.)} \pm 2.3\text{(lumi.)}\text{ pb}
\]

\[
\sigma_{CC}(P = -40.2 \pm 1.1) = 22.5 \pm 1.6\text{(stat.)} \pm 0.5\text{(syst.)} \pm 1.1\text{(lumi.)}\text{ pb}
\]

Consistent with SM using ZEUS-S (no R.H. W-exchange)
NC DIS measurement: control plots

Kinematics reconstructed from electron and hadronic final state

H1 / ZEUS Detectors are well understood after major upgrade and performing well
ZEUS NC DIS measurement: cross section

Consistent with SM
NC much less polarisation-dependent

NC challenge for HERA II
Both H1 & ZEUS:
- performing well after upgrade
- measured e^+p CC cross section with long. polarised e^+

Longitudinal lepton beam at HERA II starts to be a success!
EW sector of SM confirmed

Right now HERA runs e^-
Total HERA I e^- luminosity exceeded
New data coming to complete EW text-book plot