EW measurements with longitudinal polarised leptons in deep inelastic positron-proton scattering

Julian Rautenberg

on behalf of the

H1 and ZEUS Collaborations

- Deep inelastic scattering at HERA I
- Polarisation at HERA II
- CC and NC Measurements

The Hadron-Elektron-Ringanlage (HERA)

World-wide unique accelerator at DESY, Hamburg

proton-ring electron-ring

HERA-circumference: 6.3 kmBunch-distance: $32m \approx 96 \text{ ns} \approx 100 \text{ MHz}$

DIS at HERA

Neutral Current (NC)

 $Q^2 = -q^2 = -(k - k')^2$

 $x = \frac{Q^2}{2P \cdot q}$

 $y = \frac{\overline{P} \cdot q}{P \cdot k}$

 $s = (k+P)^2 = \frac{Q^2}{xy}$ squared cms energy

k, P fixed & 4-momentum conservation \Rightarrow 2 independent kinematic Quantities

Deep inelastic $\equiv Q^2 \gg 1 \text{ GeV}^2$, here $Q^2 \tilde{>} 100 \text{ GeV}^2$

🛞 Julian Rautenberg 🗅 🕂 🛃

NC & CC DIS measurement: events

Neutral Current (NC)

<section-header>

Signature:

• the DIS electron

Background-rejection:

- *ep*-collision vertex
- trans. (p_t) and long. $(E p_z)$ momentum conservation

Signature:

• ν undetected \Rightarrow trans. momentum

Background-rejection:

- *ep*-collision vertex
- sphericallity

🛞 Julian Rautenberg 🗅 🕂 🛃

Inclusive HERA I measurements

EW at HERA I: NC xF_3

Parity violating xF_3 :

- None-zero xF_3 measured at HERA
- Precision limited by low statistics of e^-p sample

composition of xF_3 :

- $xF_3 = -a_e\chi_Z xG_3 + 2a_e v_e\chi_Z^2 xH_3$
- xG_3 stems from γZ interference
- xH_3 arises from pure Z-exchange
- $\chi_Z = \kappa_W \cdot Q^2 / (M_Z^2 + Q^2)$
- $2a_ev_e\chi_Z^2 xH_3$ negligible
- straight forward extract xG_3

EW at HERA I: NC xF_3

Parity violating xF_3 :

- None-zero xF_3 measured at HERA
- Precision limited by low statistics of e^-p sample

composition of xF_3 :

- $xF_3 = -a_e\chi_Z xG_3 + 2a_e v_e\chi_Z^2 xH_3$
- xG_3 stems from γZ interference
- xH_3 arises from pure Z-exchange
- $\chi_Z = \kappa_W \cdot Q^2 / (M_Z^2 + Q^2)$
- $2a_ev_e\chi_Z^2 xH_3$ negligible
- straight forward extract xG_3
- compare to low Q^2 fixed-target BCDMS

EW at HERA I: helicity-structure in CC

W couples to left-(right-)handed (anti-)particles

scattering off	Spin-sum in CMS	Helicity	constraint on scattering angle
$e^+ \bar{q}$	R.H.+R.H.	zero	no preference (isotrop)
e^+q	R.H.+L.H.	one	dominantly forward

EW at HERA I: helicity-structure in CC

W couples to left-(right-)handed (anti-)particles					
scattering off	Spin-sum in CMS	Helicity	constraint on scattering angle		
$e^+ ar q$	R.H.+R.H.	zero	no preference (isotrop)		
e^+q	R.H.+L.H.	one	dominantly forward		

Down-type (anti-)quarks contribution suppressed by helicity:

$$\tilde{\sigma}^{e^-p} = x \left[u + c + (1 - y)^2 (\bar{d} + \bar{s}) \right]$$
$$\tilde{\sigma}^{e^+p} = x \left[\bar{u} + \bar{c} + (1 - y)^2 (d + s) \right]$$

Helicity-structure of EW confirmed

Assuming
$$q_s = \bar{q}_s \Rightarrow$$

 $\tilde{\sigma}^{e^-p} - \tilde{\sigma}^{e^+p} = xu_v - (1-y)^2 x d_v$
 \Rightarrow access to valence PDFs

HERA II: longitudinally polarised leptons

Longitudinal polarisation of lepton beam provides direct EW sensitivity

HERA II: e^+p 2003-04 data-taking period

🛞 Julian Rautenberg 🗅 🕂 🖳

Moriond EW, La Thuile, 5.-12.3.2005

Cross sections for polarised lepton beam

CC:
$$\sigma_{CC}(P) = (1+P) \cdot \sigma_{CC}(P=0)$$

NC:
$$\frac{d\sigma^{e^{\pm}p \to e^{\pm}X}}{dQ^2 dx} = \frac{2\pi\alpha^2}{xQ^4} \left[\sigma_0 + \sigma_i^{\pm}(\lambda) + \sigma_Z^{\pm}(\lambda) \right]$$

$$\sigma_{0} = Y_{+}\hat{F}_{2}$$

$$\sigma_{i}^{\pm}(\lambda) = P_{Z}\left[Y_{+}(-v \mp \lambda a)\hat{G}_{2} + Y_{+}(\pm a + \lambda v)x\hat{G}_{3}\right]$$

$$\sigma_{Z}^{\pm}(\lambda) = P_{Z}^{2}\left[Y_{+}(v^{2} + a^{2} \pm \lambda va)\hat{H}_{2} + Y_{-}(\mp 2va - (v^{2} + a^{2})\lambda)x\hat{H}_{3}\right]$$

$$\hat{F}_{2} = x \sum_{q} (q + \bar{q}) \cdot q_{q}^{2}$$

$$\hat{G}_{2} = x \sum_{q} (q + \bar{q}) \cdot 2v_{q}q_{q}$$

$$\hat{H}_{2} = x \sum_{q} (q + \bar{q}) \cdot (v_{q}^{2} + a_{q}^{2})$$

$$x \hat{G}_{3} = 2x \sum_{q} (q - \bar{q}) \cdot a_{q}q_{q}$$

$$x \hat{H}_{3} = 2x \sum_{q} (q - \bar{q}) \cdot a_{q}v_{q}$$

CC DIS measurement: control plots

Kinematic region: $Q^2 > 400 \text{ GeV}^2, y < 0.9$ $\sigma_{CC}(P = +33 \pm 2) =$ $34.7 \pm 1.9(\text{stat.}) \pm 1.7(\text{syst.}) \text{ pb}$ $\sigma_{CC}(P = -40.2 \pm 1.5) =$ $13.8 \pm 1.0(\text{stat.}) \pm 1.0(\text{syst.}) \text{ pb}$

Since: $\sigma_{CC}(P) = (1+P) \cdot \sigma_{CC}(P=0) \Rightarrow$ linear fit to $\sigma_{CC}(P)$ $\sigma_{CC}(P=-1) = -3.7 \pm 2.4(\text{stat.}) \pm 2.7(\text{syst.}) \text{ pb}$ Consistent with no R.H. W-exchange

ZEUS CC DIS measurement: cross section

 $\sigma_{CC}(P = +31.8 \pm 0.9) = 46.7 \pm 2.4 (\text{stat.}) \pm 1.0 (\text{syst.}) \pm 2.3 (\text{lumi.}) \text{ pb}$ $\sigma_{CC}(P = -40.2 \pm 1.1) = 22.5 \pm 1.6 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.1 (\text{lumi.}) \text{ pb}$

Consistent with SM using ZEUS-S (no R.H. W-exchange)

NC DIS measurement: control plots

ZEUS NC DIS measurement: cross section

ZEUS

ZEUS

Summary & Outlook

