Measurements of Proton Structure at HERA

Deep Inelastic Scattering at HERAStructure Functions and Parton Densities

Victor Lendermann University of Heidelberg "Fundamental Interactions" Lake Louise, 23.02.2005

Nobel Prize in Physics 2004

is awarded jointly to D. J. Gross, H. D. Politzer, F. Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction"

HERA ep Collider at DESY, Hamburg

4

Inclusive DIS – Charged Current

Inclusive DIS Kinematics

Inclusive DIS Kinematics

F_2 Measurements in pQCD Region

• Main contribution is F_2^{em} :

 $F_2 = F_2^{\text{em}} + \text{el.-weak terms}$ $F_2^{\text{em}}(x, Q^2) = x \sum_i e_i^2 (q_i + \bar{q}_i)$

- Success of perturbative QCD
 Scaling violations are well described
 over 4 orders of magnitude in *x* and Q²
- Quark substructure ruled out down to $\sim 10^{-18} \,\mathrm{m} \approx 1/1000 \mathrm{th}$ size of proton
- Precision: 2 3% (in bulk region)
 Still large errors at highest Q² and x

$$\frac{d^2\sigma_{\rm NC}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left\{\dots\right\}$$

$$\implies$$
 Higher luminosity at HERA II

xF_3 Determination

- Difference between e^+p and $e^-p \implies xF_3$ Significant at high Q^2 only
- Main contribution from γZ interference:

$$xF_3 = xF_3^{\gamma Z} + Z$$
–exchange

Constrains the valence quark content:

$$xF_3^{\gamma Z} \sim rac{Q^2}{Q^2 + M_Z^2} \sum e_q a_q (q - \bar{q})$$

- Results consistent with QCD extrapolation of fixed-target and low Q² data
- ▶ Higher luminosity is necessary
 → HERA II

Charged Current Cross Sections

HERA

(high x – high Q^2 kinematically correlated)

Neutral current:

Charged current:

 $\frac{d^2\sigma_{\rm CC}}{dxdQ^2} \sim G_F^2 M_W^4 \frac{1}{x(Q^2 + M_W^2)^2} \tilde{\sigma}_{\rm CC}$

 \Longrightarrow NC \approx CC at $Q^2 \gtrsim M^2_{Z,W}$

- ► CC $e^- p$: $\tilde{\sigma}_{CC}^- \sim xu + (1-y)^2 x \bar{d}$ At high *x*: *u*-quarks dominate
- ► CC e^+p : $\tilde{\sigma}^+_{CC} \sim (1-y)^2 x d + x \bar{u}$ At high *x*: *d*-quarks dominate

 $\implies \mathcal{E}\chi$ traction of u and d densities

PDFs from NLO QCD Fits

Present knowledge

- ▶ *u* density best known (\rightarrow 3%)
- ▶ d density less well known (~ 10%)
- ▶ gluon density ~ 10 20% determined from scaling violations

H1 and ZEUS consistent but many differences in fit approaches (matter of investigations)

Precise Measurements of α_s

- Largest uncertainty theoretical dependence on renormalisation scale *NNLO promises world beating* α_s
- New prel. ZEUS analysis: constrain gluon and *α_s* in PDF fits using jet cross sections

Determination of F_L

- $F_L \propto \alpha_s x g(x)$ constrains gluon density (especially important at low Q^2)
- ► Data sensitive at highest *y* only

$$\sigma_{\rm NC} \propto \left\{ Y^+ F_2 \dots - y^2 F_L \right\}$$

Indirect determination
 extrapolating *F*₂ to higher *y*

$$\sigma_{\rm fit} = cx^{-\lambda} - \frac{y^2}{1 + (1 - y)^2} F_L$$

10⁻³

10⁻²

1 96-97

BCDMS QCD Fit (H1) F₂ QCD $Q^2 = 25 \text{ GeV}^2$

10⁻¹

Х

σ_r=F₂-y²F_L/Υ₊

1.5

0.5

0L

10⁻⁴

F_L at Fixed y = 0.75

- *F_L* spans 3 orders of magnitude in Q²
 Basic agreement with NLO pQCD fits
 H1: non pagligible *F_L* at low Q²
- H1: non-negligible F_L at low Q^2

HERA II – First Results

- HERA II is running and collecting data
 Major beam background problems solved
- New: longitudinal polarization of e^{\pm} -beam Typically ~ 40%
- CC data are consistent with SM:

 $\sigma_{\rm CC}^{\pm}(\mathbf{P}) = (1 \pm \mathbf{P})\sigma_{\rm CC}^{\pm}(0)$

No hint for right-handed CC

 Also el.-weak terms in σ_{NC} are sensitive to polarization
 New possibility to disentangle individual quark flavours at high Q²

Summary

- Proton structure functions are measured at HERA in a wide range of *x* and Q²
- Scaling violations are well described by pQCD
- Parton density functions can be extracted using HERA data only
- ► High *x*, high Q^2 still statistically limited. Expect improvements by HERA II – collect $O(1 \text{ fb}^{-1})$
- *e*-beam polarization new tool at HERA II.
 Expect improved extraction of parton densities
- Hope to reach highest precision for α_s

Additional Information

PDFs for LHC

Precise quark and gluon densities are required in the whole x range to understand signal and background

