

Hadron Spectroscopy and Heavy Flavor Production at HERA

D.Boscherini INFN-Bologna on behalf of the H1 and ZEUS Collaborations

- Recent results on charm and beauty production
- Results on search for pentaquarks

19th Rencontres de Physique de la Vallee d'Aoste La Thuile 2005, 27th February- 5th March

Year	Beams	s ¹ / ₂ (GeV)	Luminosity (pb ⁻¹)
			ZEUS - H1
94-97	e⁺p	300	47.7 - 35.6
98-99	e ⁻ p	318	16.7 - 16.4
99-00	$e^{+}p$	318	65.1 - <mark>65.2</mark>

Heavy flavor production at HERA

HFL production processes at HERA:

Two kinematic regimes:

deep inelastic scattering ($Q^2 > 1 \text{GeV}^2$) dominated by direct process photoproduction ($Q^2 \sim 0 \text{GeV}^2$) resolved contribution important

Powerful tool for testing proton structure and pQCD

NLO QCD calculations available: FMNR (Frixione, Mangano, Nason, Ridolfi) in photoproduction HVQDIS (Harris, Smith) in deep inelastic scattering

Heavy Flavor tagging

Charm: efficiently tagged via reconstruction of the D^* decay $D^* \rightarrow D^0 \pi^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ and mass difference ΔM=M($K\pi\pi$)-M($K\pi$)

Beauty: high mass and long lifetime of B-hadrons can be exploited to discriminate b production from that of lighter quarks (true for charm to less extent)

Beauty cross sections

Beauty cross sections

General agreement between H1 and ZEUS

H1: hep-ex/0502010

ZEUS: Phys. Lett. B599 (2004) 173-189 Phys. Rev. D70 (2004) 012008

Inclusive lifetime tagging for charm and beauty

Q²>150 GeV² 0.1< y < 0.7

• Quark flavor separation using significance: $S = \delta / \sigma(\delta)$

Remove negative from positive side of distribution and fit to extract *c* and *b* fractions

 F_2^{cc} and F_2^{bb} measurement at high Q^2

H1: extraction of fully inclusive cross sections (ZEUS points extracted from D^{*})

DESY 04-209

contribution of charm to F₂ rises with Q^2 from 10 to 30%

H1 and ZEUS data in agreement and consistent with NLO QCD

D^* cross section at low Q^2

Test of NLO QCD for charm production in region of transition to photoproduction regime

Low Q² values reached by measuring the scattered electron in Beam-Pipe Calorimeter (BPC)

Measurements consistent with predictions even at low Q²

D-meson production

candidates / 20 MeV

Study of fragmentation using D-meson production

Charm tagging via reconstruction of secondary vertex with the H1 central silicon tracker (CST)

D-meson production

deduce fragmentation factors

D-meson production

Fragmentation factors in good agreement with LEP

$1.5 < Q^2 < 1000 \text{ GeV}^2$, 0.02 < y < 0.7, $p_{\tau}(D) > 3.0 \text{ GeV}$, |(D)| < 1.6

		ZEUS (nb)	NLO QCD (nb)
(e⁺p	e [±] D ⁰ X)	7.44±0.78 ^{+0.29}	7.14
(e⁺p	e⁺D±X)	2.42±0.30 ^{+0.21} _{-0.06}	3.02
(e⁺p	e⁺D _s X)	2.25±0.30 ^{+0.09} -0.33	1.32
(e⁺p	e⁺D [*] X)	3.22±0.08 +0.07 -0.05	3.06

hep-ex/0408149

Good agreement for D^{*} and D⁰, some deviation for D_s

Search for pentaquarks at HERA

Several experiments reported observation of a narrow resonance with a mass of ~1530 MeV decaying to K⁺n or K⁰ p

State with B = +1 and $S = +1 \implies$ minimal quark composition uudds

Furthermore, NA49 reported observation of Ξ^{--} and Ξ^{0} , states with S = -2

ZEUS search for $\Theta^{+(-)} \rightarrow \widetilde{p} K^{0}$

 $L = 121 \text{ pb}^{-1}$

proton selection: dE/dx > 1.15 mips p(p) < 1.5 GeV $|\eta| < 1.75$ proton purity of ~60%

870000 K_{s}^{0} : $p_{T}(K^{0})>0.3 \text{ GeV}$ $|\eta|<1.5$ mass peak at 498.12±1 background < 6%

ZEUS search for $\Theta^{+(-)} \rightarrow p^{(-)} K^0_{s}$

ZEUS

Bump best seen for $Q^2 > 20 GeV^2$

Fitting with bkg + two gaussians M=1522 MeV N=221±48 ⇒ 4.6σ bump

Not shown: fitting with bkg + gaussian \Rightarrow 3.9 σ bump

Signal seen in both charges Inset: K⁰_s anti-p 96±34 events

ZEUS search for PQ decaying to $\Xi^-\pi^\pm$

No pentaquark signal observed!

Known $\Xi^{0}(1530)$ state well visible

Negative result also in similar analysis for $Q^2 > 20 GeV^2$ (kinematic region where Θ^+ best seen in ZEUS)

H1 search for $\Theta_{c}^{0} \rightarrow D^{*-(+)}p^{(-)}$

If strange-flavored pentaquarks exist, they should also exist with charm flavor

 $1 < Q^{2} < 100 \text{ GeV}^{2}$ 0.2 < y < 0.7 $p_{T}(D^{*}) > 1.5 \text{ GeV}$ $|\eta(D^{*})| < 1.5$ inelasticity $z(D^{*}) > 0.2$

D* selected in a ±2.5MeV window around the peak: 3400 candidates

1

10

p [GeV]

0 └─ 10 ⁻¹

Proton identification via dE/dx resolution ~8%

H1 search for
$$\Theta_{C}^{0} \rightarrow D^{*-(+)}p^{0}$$

Signal visible in D^{*+}p and D^{*-}p separately with same significance and in different data taking periods Gaussian fit with free parameters for peak position, width and normalization

Bgnd fluctuation probability: 5.4σ

Observed D*p resonance estimated to contribute ~1% of the total D* production rate in the kinematic region studied

H1 search for $\Theta^0 \rightarrow D^{*-(+)}$

Kinematics of D^* and *proton* candidates from decay of a resonance expected to be different from those of the background distribution

Signal visible also in photoproduction (not shown), but with higher background contamination

ZEUS search for
$$\Theta_{C}^{0} \rightarrow D^{*-(+)}p^{(-)}$$

 $L = 126 \text{ pb}^{-1}$

- D* reconstructed in two channels:
 - 1) $D^{*+} \rightarrow D^{0}\pi_{s}^{+} \rightarrow (K^{*}\pi^{+})\pi_{s}^{+}$ 2) $D^{*+} \rightarrow D^{0}\pi_{s}^{+} \rightarrow (K^{*}\pi^{+}\pi^{+}\pi^{-})\pi_{s}^{+}$ (+ c.c.)
- D* candidates: 62000 (total) 13000 (Q²>1GeV²)

proton identification via dE/dx resolution 9% (similar to H1)

ZEUS search for $\Theta^0 \rightarrow D^{*-(+)}$

MC signal normalized to 1% of observed *D**

No sign of the H1 pentaquark signal

Upper limit on fraction of D^* originating from $\Theta^0_{\ C}$ decay for $Q^2>1GeV^2$: 0.35% at 95% C.L.

Summary and outlook

Heavy Flavors:

- charm DIS cross sections in good agreement with NLO QCD even in region at very low Q²
- charm fragmentation in agreement with e^+e^- results
- beauty cross sections in reasonable agreement with NLO QCD, but data tend to be above theory
- first measurement of F^{bb}₂ at Q²>150GeV² reported by H1

Pentaquarks:

- $\Theta^+(1530)$: signal of a few sigmas in ZEUS
- Ξ^{--} (1860): not confirmed by ZEUS
- $\Theta^{0}(3100)$: signal in H1, not confirmed by ZEUS

HERA II:

- data taking started in 2003, ~40pb⁻¹ delivered with e⁺p switched to e⁻p at end of 2004, ~20pb⁻¹ already integrated data taking will end in 2007
- improved analyses and detector performances (e.g. ZEUS MVD)

Backup: ZEUS search for $\Theta^{+(-)} \rightarrow p^{(-)}K^{0}_{s}$

